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Executive Summary 

AutoNav addresses the growing need for accessible indoor navigation for individuals 
with visual impairments through an autonomous robotic aid built on affordable, 
off-the-shelf hardware. The system combines a Raspberry Pi-based platform with a 360° 
LiDAR sensor and Pi Camera, leveraging OpenAI’s Vision API for scene understanding. 
Navigation is handled by a Proximal Policy Optimization (PPO) reinforcement learning 
model trained in NVIDIA’s Isaac Sim. AutoNav demonstrated its effectiveness in 
navigating complex environments and delivering practical assistance, ultimately 
enhancing user independence and safety. Future iterations of the platform would 
benefit from upgraded compute hardware and a more task-specific robotic platform, 
broadening the system’s real-world reliability and applicability. 

 
 



 

1.​ Introduction  

Visually impaired individuals face substantial barriers when independently navigating 
indoor spaces. Traditional aids, such as white canes or guide dogs, offer primarily passive 
feedback and rely extensively on the user's prior familiarity with the environment or 
external assistance. This limitation can significantly restrict the independence and 
mobility of visually impaired persons, affecting their quality of life and autonomy. As 
indoor environments like workplaces, homes, hospitals, and public buildings become 
increasingly complex and dynamic, there is a pressing need for more sophisticated and 
active assisting methods that enable greater navigational autonomy. 
 
The AutoNav project is designed explicitly to address these limitations by developing an 
autonomous smart-cane capable of actively guiding users to known destinations. By 
utilizing modern robotics and artificial intelligence, AutoNav offers a substantial 
improvement over conventional methods. The smart-cane uses an RC-based robotic 
platform controlled by a Raspberry Pi Linux computer [1], integrated with a 
high-resolution 360° planar LiDAR sensor [2], IMU [3], and a Pi Camera [4]. The LiDAR 
provides precise distance measurements, essential for active environments and obstacle 
avoidance. The IMU measures and provides the RC’s acceleration and angular rate. 
Simultaneously, the Pi Camera captures visual data processed through OpenAI’s Vision 
API, to provide environmental descriptions via audio feedback and localization of the 
smart-cane mid route [5]. Together, these three significantly enhance spatial awareness 
and safety for users. 
 
This project aligns closely with the Engineers and Geoscientists BC (EGBC) Code of Ethics 
[6], particularly the principles emphasizing public safety, health, and welfare, as well as 
honest and transparent communication of technical capabilities and limitations. By 
focusing on user safety and clearly disclosing the system constraints, the project 
maintains the high ethical standard set out by EGBC. Furthermore, AutoNav directly 
supports the EGBC ethical principle of social responsibility, as it seeks to provide 
equitable access to mobility solutions, bridging existing gaps caused by current 
limitations in accessibility technologies. 
 
The potential user base for AutoNav includes visually impaired individuals across a 
variety of indoor settings. Users can benefit significantly by gaining the ability to 
independently navigate environments that are typically challenging or inaccessible 
without assistance. AutoNav not only supports daily living activities but also enhances 
social inclusion by allowing users to participate more fully and confidently in 
professional, educational, and social activities.  
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2.​ Objectives 
The primary objective of the project was to develop a cost-effective, intelligent 
navigation aid tailored for individuals with visual impairments, This included designing a 
mobile platform capable of indoor navigation and providing real-time auditory scene 
descriptions to the user. The team focused on achieving this goal through careful 
hardware integration, reinforcement learning, and user-friendly interface. 
 
Initial development involved constructing the prototype using a reliable RC platform as 
the mobility base, followed by the design and fabrication of a custom 3D printed chassis 
to house the components securely. A compact, custom-designed PCB was created to 
improve system integration and maintain electrical reliability. Efforts were made to 
design an ergonomic smart cane equipped with intuitive controls to serve as the primary 
interface. 
 
Key complex tasks and milestones include: 

●​ Training a Proximal Policy Optimization (PPO) reinforcement learning model for 
autonomous navigation from an accurate simulation environment and robot 
model in Nvidia’s Isaac Lab. 

●​ Integrating a 360° LiDAR sensor and Pi Camera for precise environmental 
scanning and real-time scene analysis. 

●​ Develop control logic for the user interface, ensuring seamless interaction 
between user commands and platform response. 

●​ Design and build an autonomous vehicle capable of path navigation and obstacle 
avoidance. 

3.​ Design Specifications 
The AutoNav system incorporates several interconnected subsystems, each meticulously 
selected to optimize performance, cost-efficiency, reliability, and safety. 

3.1.​ Robotic Platform 
The RC base was chosen due to its reliability, flexibility, and modularity. The platform 
ensures smooth navigation across various surfaces. It includes a powerful DC motor, 
articulating suspension, 4-wheel drive, and servo steering capable of precise 
maneuvering, essential for accurate route following. 

3.2.​ Raspberry Pi 5 
A Raspberry Pi 5 (8 GB model) was selected as the primary compute board, offering a 
balance of computing power and cost for the project’s requirements. It delivers 
sufficient performance to handle sensor data capture, motor control and on-board AI 
inference while remaining within budget. 
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3.3.​ Custom Battery Power Supply 
A custom-made battery pack with regulated voltage output ensures stable, reliable 
power delivery. The battery management system safeguards against overcharge, 
discharge, and short circuits, aligning with the EGBC guidelines on public safety and 
product reliability standards. 

3.4.​ LD19 LiDAR Sensor 
The LD19 LiDAR provides a 360° planar field of view, measuring distances up to 12 
meters with an accuracy of ±5 centimetres. Its high-frequency scanning capability (4500 
Hz sampling rate) offers superior environmental perception, vital for obstacle avoidance 
and navigation. The LD19 was selected over ultrasonic or infrared sensors due to its 
higher resolution and radial scanning pattern. 

3.5.​ Pi Camera Module 
The Pi Camera captures images used for both the Visual Place Recognition (VPR) system 
and the OpenAI scene description pipeline. It offers 5 MP resolution with a 54°×43° 
viewing angle and adjustable focus, enabling consistent image quality under varied 
indoor lighting conditions. For VPR, these images are converted into visual embeddings 
to localize the robot within one of 50 predefined regions. This functionality is critical for 
supporting high-level navigation decisions. Additionally, the same camera is used to 
generate scene descriptions through OpenAI’s Vision API, which are converted to audio 
feedback to assist visually impaired users in understanding their surroundings. 

3.6.​ BNO085 Inertial Measurement Unit (IMU) 
The integrated IMU provides crucial orientation and motion tracking data through a 
combination of accelerometers, gyroscopes, and magnetometers. It delivers accurate 
measurements of pitch, roll, yaw, and acceleration, significantly enhancing the robot’s 
capability for precise localization and smooth navigation. The IMU chosen offers a high 
refresh rate (up to 100 Hz), essential for maintaining accurate real-time feedback in 
dynamic conditions. Its compact size, reliability, and cost-effectiveness make it ideal for 
seamless integration into the AutoNav system. 

3.7.​ Ergonomic Cane & Handle 
The smart-cane is ergonomically designed for user comfort, including intuitive button 
placement and weight distribution to minimize user fatigue. PLA filament [7] prioritizes 
durability, weight reduction, easy production, and compliance with ergonomic standards 
to promote extended usability and comfort. 

3.8.​ PCB Design 
A custom-designed PCB breakout board simplifies connections to all system 
components, minimizing wiring complexity and giving the prototype a refined, 
professional appearance. 
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3.9.​ Compliance and Ethical Considerations 
All component selections and system designs strictly adhere to EGBC’s Code of Ethics, 
specifically ensuring user safety, public welfare, transparency, and environmental 
responsibility. Regulations concerning electronic component safety, electromagnetic 
compatibility, and battery management were rigorously followed. 

4.​ Literature Survey 
Assistive technologies for visually impaired navigation have seen significant 
advancements, yet each solution presents distinct limitations in terms of cost, usability, 
and capability. 
 
The Glidance device, marketed as the world’s first fully autonomous mobility aid, 
combines robotics and AI to physically guide users without the need for traditional aids 
such as white canes or guide dogs. Although robust in capability, its subscription-based 
pricing model limits accessibility for many users due to high long-term costs [8]. 
Additionally, Glidance’s comprehensive system can be bulky and require complex setup 
procedures, potentially hindering ease of use for everyday applications. 
 
Stanford University’s Intelligent Systems Lab developed a DIY augmented cane, priced at 
approximately $400 USD, incorporating LiDAR, GPS, and sensor fusion to actively guide 
users via gentle haptic feedback. This approach notably increased users’ walking speed 
by approximately 20% compared to traditional white canes [9]. Despite its affordability, 
the augmented cane’s reliance on GPS limits its accuracy indoors, especially in buildings 
with weak satellite reception. 
 
Commercially available ultrasonic and infrared (IR)-based navigational devices typically 
provide simple proximity alerts rather than active guidance. For instance, devices like 
UltraCane [10] and BuzzClip [11] offer obstacle detection through haptic feedback but 
lack route planning or active navigation capabilities. These passive aids require 
significant cognitive effort from the user, thereby limiting their practical usability and 
effectiveness. 
 
AutoNav improves upon these existing technologies by integrating active robotic 
navigation, precise environmental sensing through a 360° LiDAR sensor, and scene 
analysis through a Pi Camera linked to OpenAI’s advanced Vision API. The PPO-based 
reinforcement learning [12] approach ensures robust navigation through dynamic 
environments, significantly surpassing the capabilities of simpler obstacle detection 
systems. 
 
In terms of cost, AutoNav achieves a competitive advantage by combining affordable 
off-the-shelf hardware components, totalling approximately $801.14, not including 
prototype funding, with minimal ongoing operational costs, unlike subscription-based 
systems. Furthermore, the intuitive user interaction model of AutoNav, a simple button 
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press connected with audio feedback, enhances ease of use and reduces the learning 
curve significantly compared to more complex devices like Glidance. 
 
The project adheres strictly to the EGBC Code of Ethics, prioritizing safety, transparency, 
and social responsibility. Regulations for electronic safety, electromagnetic compatibility, 
and battery management standards have been rigorously followed, ensuring user safety 
and product reliability. 

5.​ Team Duties & Project Planning 

5.1.​ Mattias Duties  
The responsibilities and project planning of group member one are highlighted in this 
section. 
 
5.1.1.​ AutoNav Platform Construction 
Serving as the basis for this project, we needed to research and select a reliable RC car 
platform that could support the weight, size, and power demands of an autonomous 
navigation system. The platform had to be compact enough for indoor use, lightweight 
for ease of transport, and robust enough to handle repeated testing and hardware 
modifications. 
 
Once the platform was selected, I designed and 3D printed custom chassis components 
to mount all compute hardware, batteries, and sensors. Due to the size constraints of 
the project, tolerances between components were extremely tight, so significant care 
and planning went into the layout, wiring, and overall construction. Heat-set threaded 
inserts were embedded into the prints to allow for repeatable assembly and 
disassembly. These frames ensured mechanical stability while also enabling rapid 
iteration during integration and testing. 
 
5.1.2.​ Power Supply Design 
Design and troubleshoot a power supply capable of reliably powering the platform. RC 
hardware is typically tolerant to significant voltage sag due to the high-current demands 
placed on the batteries, but this behaviour is incompatible with compute hardware such 
as Raspberry Pis, which are highly sensitive to voltage drops and operate within a 
narrow tolerance range. Extensive troubleshooting and redesign were required to 
identify a battery and regulator combination that could maintain stable voltage under 
rapidly changing load conditions, eliminating the risk of voltage sag and resulting 
brownouts. 
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5.1.3.​ Autonomous Navigation Model Training  
To enable autonomous navigation, I was responsible for training a reinforcement 
learning model using Proximal Policy Optimization (PPO). Rather than training the model 
on the physical robot, which would have been slow, hardware-intensive, and potentially 
destructive, I built a 1:1 simulation of both the robot and its environment using Isaac 
Sim. This allowed us to run hundreds of parallel training environments, accelerating 
development and enabling rapid iteration on reward structures and observation space 
design. 
 
To create an accurate simulation, I used LiDAR scans from an iPhone 15 Pro to 
reconstruct the third floor of the ELW building and modified an existing Isaac Lab RC car 
3D model to match our physical platform. I then developed a waypoint-based navigation 
system across 49 distinct regions, along with a fine-tuned observation and reward 
scheme to incentivize navigation and punish collisions.  
 
Training posed continuous challenges, particularly when transferring the model to real 
hardware. To address the “sim-to-real” gap, I implemented domain randomization - 
added observation noise, and introduced observation and action delays into the 
simulation. I also compared IMU data between hardware and simulation to fine-tune 
vehicle dynamics. Despite these efforts, transferring our most intelligent models to 
hardware resulted in poor real-world performance. A simplified generalized policy was 
ultimately deployed as a fallback, which reliably demonstrated hallway following and 
obstacle avoidance in real-world tests. 
 
5.1.4.​ System Integration 
To facilitate the final operation of AutoNav, I developed a central controller script to 
manage a set of modular subsystems, each running on an independent thread to avoid 
blocking or interfering with others. All subsystems inherit from a shared base class that 
defines a consistent initialization pattern and loop structure, ensuring clean integration 
and predictable behaviour across the system. 
 
A top-level app script controls the behaviour of the central controller and provides a 
user interface built with Plotly Dash. This frontend allows the user to interact with the 
system and view real-time telemetry visualizations, maps, and performance charts. 
 
A set of custom drivers handles low-level communication with all onboard sensors and 
actuators. The controller collects data from these drivers and routes it to the appropriate 
subsystems. This architecture supports the main inference loop, the visual place 
recognition system, and the OpenAI scene description pipeline, while maintaining clear 
separation of responsibilities across components. 
 
Significant care went into the design of this architecture due to the complexities of 
working with multithreaded programs. Without strict control over initialization order, 
shared state, and thread lifecycles, subtle bugs and race conditions can lead to system 
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instability. The introduction of a subsystem base class was key in maintaining this 
control, as it enforced consistent structure, threading behaviour, and lifecycle 
management across all subsystems. Additional safeguards, such as centralized telemetry 
handling using a shared state class, were critical in ensuring stability and responsiveness 
under real-time conditions. 

5.2.​ Eiden Duties 
The responsibilities and project planning of this group member are highlighted in this 
section. 
 
5.2.1.​ LiDAR Sensor 
The integration and implementation of the LiDAR sensor subsystem were prioritized due 
to its critical role in navigation and real-time environment perception. Key 
responsibilities included selecting the appropriate LiDAR sensor (LD19), designing data 
parsing and validation algorithms, and ensuring seamless real-time communication with 
the Raspberry Pi. 
 
An issue arose where the LD19 sensor was transmitting data faster than it could be read 
by the main program loop. As a result the serial buffer remained full of outdated data, 
causing the robot to react to stale environmental inputs. This led to delays in obstacle 
detection and erratic behaviour. 
 
The solution involved running the LiDAR data acquisition on a separate high-priority 
thread. This thread continuously read from the serial port at the maximum possible rate 
to keep the buffer clear, ensuring up-to-date data was always available. Data was only 
passed to the main thread upon request, maintaining clean decoupling between data 
collection and usage. This adjustment significantly improved the responsiveness and 
reliability of the obstacle avoidance and demonstrated the importance of multithreaded 
architecture when handling high-throughput sensor data. 
 
5.2.2.​ PCB Design 
The PCB design task was essential for achieving compactness, reliability, and 
maintainability within the project. Responsibilities included designing a custom Pi 
Breakout PCB to streamline sensor connections and minimize wiring complexity. 
Challenges faced during this process involved finding proper footprints for the Pi and the 
IMU and ensuring proper component selection for longevity and reliability. A few 
revisions of the PCB were made, ultimately resulting in a highly reliable and effective 
final design. 

 

7 



 

5.3.​ Jairus Duties 
The responsibilities and project planning of this group member are highlighted in this 
section. 
 
5.3.1.​ Cane CAD Design 
The CAD model of the Cane was considered to be a high-priority for the completion of 
the prototype. The cane was to be made ergonomic for extended use and required to 
support dual momentary triggers. Challenges encountered for this responsibility were 
miscalculations of tolerances when 3D printing, as well as the orientation of the model 
for durability. Several revisions were made to address these issues. 
 
5.3.2.​ Scene Description Subsystem 
The scene description subsystem was considered to be a medium-priority for the 
prototype since the sole function of the platform was for autonomous guidance. The 
development of the subsystem surfaced two constraints. First, the low-cost Raspberry Pi 
Camera Module exhibits limited dynamic range and low-light sensitivity which causes a 
rapid loss of visual features under indoor conditions at times. This limitation was left 
unresolved in the current prototype; future iterations will consider incorporating a 
higher quality camera. Secondly, initial captioning yields verbose outputs that include 
aesthetic context rather than mobility-relevant cues. To resolve this, the model was 
fine-tuned in order to only describe features that might block the user’s path. 
 
5.3.3.​ Web App Integration 
Integrating the scene description module with the web application was treated as a 
medium-priority task. The first text-to-speech engine was sluggish and contained noise. 
To resolve this issue, the engine was replaced with OpenAI’s text-to-speech endpoint 
which produced clearer, faster audio. A Python service calls the OpenAI API which 
converts each caption from the Scene Description Subsystem to an MP3 which the front 
end requests in order to play audio for the user and presents the caption text on the 
web app for testing and validation. 

6.​ Design Methodology & Analysis  
To develop the AutoNav prototype, the design task was divided into three primary 
phases: robotic platform design, reinforcement model training, and system integration. 
Each phase involved iterative decision-making guided by technical constraints, 
real-world feasibility, and simulation-based analysis. 

6.1.​ Robotic Platform Design 
The core challenge in designing the robotic platform was to select sensors, compute 
hardware, and an RC car base that could support the demands of autonomous indoor 
navigation, while staying within a realistic prototype budget. 
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6.1.1.​ Sensor Selection 
Our first priority was determining the minimum viable combination of sensors that 
would allow a reinforcement learning (RL) model to navigate reliably in known 
environments. Through a combination of research and empirical testing, we settled on a 
360° planar LiDAR (LD19) and an IMU (BNO085) as the primary sensor inputs. 
 
The LiDAR provides rich spatial information, enabling the agent to perceive obstacles 
and corridor geometry. The IMU contributes gyro yaw rate, linear acceleration data and 
compass heading, which the agent uses to estimate its motion, allowing it to smoothly 
maneuver through turns. Additionally, the IMU data allowed us to characterize the 
motion properties of the car, which we needed to match the behaviour of the simulation 
as closely as possible.   
 
While this configuration allowed successful autonomous navigation through straight 
corridors and turns, we encountered an issue known as perceptual aliasing: certain 
locations appeared indistinguishable from others when relying solely on LiDAR. This was 
problematic in scenarios like T-junctions or intersections, where different actions (turn 
left vs. turn right) were context-dependent. 
 
To address this, we initially tried incorporating the compass heading from the IMU, but 
this failed to differentiate regions with identical layout and orientation. We then 
introduced a Visual Place Recognition (VPR) system using an onboard camera to provide 
high-level contextual information. The VPR system allows the robot to be able to localize 
itself to any of 50 distinct regions we established in our 3rd-floor ELW testing grounds. 
 
6.1.2.​ Compute Hardware 
Choosing the onboard computer hardware required balancing inference speed, 
thermal/power constraints, and cost. 
 
We initially considered high-performance edge computing platforms such as the NVIDIA 
Jetson Orin Nano [14], which offers strong inference performance through GPU 
acceleration. However, due to severe supply shortages and price inflation pushing prices 
above $700 CAD despite an MSRP of $350 CAD, this option became infeasible within our 
budget constraints. On the opposite end of the spectrum, low-cost microcontrollers, 
such as ESP32 [15] or Arduino-class devices [16], were ruled out due to insufficient 
processing capability, especially once vision-based features became necessary. 
 
The optimal balance was found with the Raspberry Pi 5, a general-purpose Linux 
single-board computer with a quad-core 2.4GHz processor and 8GB of RAM. Compared 
to earlier Pi models, the Pi 5 delivers a significant performance boost, enabling 
higher-rate inference of our PPO-trained navigation policy, while leaving headroom for 
auxiliary subsystems such as our VPR and OpenAI loops, as well as serving the mobile 
webapp for end users to interact with. 
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6.1.3.​ Pi Breakout PCB 
The complexity and compactness of the AutoNav necessitated the development of a 
custom breakout PCB specifically for the Raspberry Pi. Initially, direct connections using 
jumper wires made it difficult to work with due to their fragility, are susceptible to 
electromagnetic interference (EMI), and challenges in troubleshooting and maintenance. 
The Pi Breakout PCB was thus designed to significantly streamline the connections, 
provide reliability, and simplify debugging procedures. The PCB layout considers features 
like labelled terminals, secure screw-terminal connectors, and dedicated voltage rails. 
The PCB model can be seen below in Figure 1. 
 

 
Figure 1: 3D Viewer of PCB (KiCAD). 

​
This custom-designed PCB not only improved reliability and maintainability but also 
significantly reduced the overall project wiring complexity, enabling rapid system 
prototyping and iterative additions. The finalized breakout PCB design proved essential 
in addressing earlier integration issues and ensuring consistent performance throughout 
all phases of testing and demonstration. 
 
6.1.4.​ Batteries and Power Supply 
Most hobby-grade Electronic Speed Controllers (ESCs) include a basic voltage regulator 
as part of a Battery Eliminator Circuit (BEC), allowing the servos and RC receiver to be 
powered through the same three-wire interface. While this design greatly simplifies 
wiring for typical RC applications, it proved unsuitable for our system due to the strict 
power requirements of the Raspberry Pi 5. 
 
The BECs found in typical ESCs can usually supply only around 1 A of current, and while 
they are labelled as 5 V, they often operate at slightly higher voltages (5.5 - 6 V) to 
accommodate the tolerance of standard RC components. These devices are designed to 
function across a broad voltage range and are generally unaffected by voltage sag during 
load. However, the Raspberry Pi is significantly less tolerant. It is rated for a strict 5 V 
±5% range; if the voltage drops below 4.7 V, the Pi begins to throttle performance, and 
at 4.6 V or lower, it will shut down entirely. 
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This sensitivity is problematic under computationally heavy loads such as real-time 
inference or visual embedding extraction for our Visual Place Recognition (VPR) system. 
Even with a seemingly sufficient 5 V supply, rapid current draw would often cause 
voltage sag severe enough to trigger Pi throttling or full brownouts. 
 
To address this, we replaced the ESC-integrated BEC with a higher-current external UBEC 
(Universal Battery Elimination Circuit), which significantly improved voltage stability 
under load. However, despite the improved regulator, we still observed occasional 
brownouts, especially when drawing high peak current during processing-intensive 
tasks. Further investigation with an oscilloscope revealed that the issue was not with the 
regulator itself, but with the battery: the standard 1400 mAh RC LiPo pack, while capable 
of high burst current, had unacceptable voltage sag during sustained draws. 
 
To resolve this, we upgraded the battery to use a swappable set of four 18650 
lithium-ion cells, a common battery cell used in laptops and electric vehicles. We 
configured four cells in a 2S2P arrangement - two cells in series, wired in parallel with 
another identical pair. This new configuration delivers cleaner power, increased energy 
storage, and improved voltage stability under load. 
 
Since making this change, all power-related faults have been eliminated, and the 
Raspberry Pi has operated reliably under nearly all usage conditions, including peak 
inference workloads. 
 
6.1.5.​ RC Platform Selection 
Due to the large-scale task of training an autonomous navigation system, we chose to 
focus our efforts on that core challenge and reduce the development overhead of 
building the robotic platform from scratch. To achieve this, we selected a common and 
well-regarded off-the-shelf RC platform. This allowed us to work with a reliable, robust, 
and easily serviceable base, enabling faster iteration and integration. While a future 
version of this project would benefit from a custom-built platform tailored specifically to 
this application, our approach was the most practical given our limited timeframe. 
 
When selecting a platform, the most important considerations were scale and price. RC 
vehicles are typically categorized by scale relative to real vehicles. While 1/10th scale 
platforms are widely available, they are too large and expensive for our needs. Their size 
would make the system cumbersome for end users to transport, and their speed and 
weight could pose safety risks during failures. They are also poorly suited for navigating 
indoor environments such as hallways due to their size and speed. 
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Figure 2: The selected RC Car Platform. 

 
We ultimately chose the LaTrax Prerunner [17], a 1/18th scale vehicle that struck the 
ideal balance. It offered just enough internal space to house our onboard hardware with 
careful planning, while remaining compact and maneuverable. We selected this model in 
part because its parent company, Traxxas, is one of the most reputable names in the RC 
industry. The vehicle is easy to disassemble and repair, with widespread parts availability 
in local hobby stores. 
 
6.1.6.​ Electronics Chassis Design 
 

 

Figure 3: Raspberry Pi (Left) and Battery (Right) Chassis. 
 
To mount all compute hardware, sensors, and batteries, we designed and 3D printed 
custom chassis components that affix directly to the LaTrax Prerunner platform. Where 
possible, we utilized the vehicle’s existing mounting holes and hardware. Additional 
rigidity was achieved using zip ties in key locations. To allow for repeatable assembly and 
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disassembly, we embedded heat-set brass threaded inserts into the printed 
components, avoiding the need to drive machine screws directly into plastic - an 
unreliable mechanical connection prone to wear and loosening. 

The LiDAR and camera, and the cane’s U-joint mount are fixed to a dedicated bracket 
that uses the RC chassis’s original body-pin post. 

6.1.7.​ Cane Design  
Several revisions of the handle were modelled in CAD, 3D printed and tested for 
ergonomics and control. The two most viable prototypes are presented in Figures 4 and 
5 below. Figure 4 offers a visually refined design, however, its squared edges create a 
rather uncomfortable feeling for prolonged use. The revised spherical geometry in Figure 
5 resolves these issues and was therefore selected for the final cane assembly. It 
accommodates two momentary trigger switches. One trigger was positioned for thumb 
actuations on the upper surface and the second trigger was positioned beneath the grip 
for index-finger input. The handle contains an internal conduit that neatly routes the 
wires to the vehicle. These interfaces tie directly to the Autonomous Guidance and 
Scene-Observation subsystem outlined in Section 6.3. 
 

 
Figure 4: First Revision of the Cane Handle. 
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Figure 5: Second Revision of the Cane Handle. 

 
In operation, the upper switch toggles autonomous-guidance engagement, while the 
lower switch initiates on-demand scene narration. The sealed wiring channel preserves a 
clean exterior profile, protects the electrical components and simplifies maintenance by 
allowing module replacement. 

6.2.​ Reinforcement Model Training 

For our robot to successfully autonomously navigate, we need to provide an AI agent 
with observations of the world and train a model to learn which actions are good and 
which are not. While we could have assembled the car and trained it in real-time, this 
would be an extremely slow and laborious process, and likely damaging to the platform 
due to frequent collisions during the early stages of learning. On top of that, the car 
would need to be fully assembled and operational before training could even begin, 
which would make it difficult to parallelize tasks across the project timeline. 

A smarter approach is to build a 1:1 recreation of both the robot and our chosen indoor 
environment in simulation. This allows us to run hundreds of parallel environments for 
hours each day, accelerating training by orders of magnitude. Additionally, with so many 
parallel instances, we can iterate far more quickly on the reward structure and 
observation space design, whereas real-world training would require hours of runtime 
just to see results, leading to extremely slow feedback cycles. 
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6.2.1.​ Environment Model Creation 
To create realistic models of our real-world testing environment, we chose to utilize the 
LiDAR scanning capabilities of an iPhone 15 Pro. Apps such as PolyCam and Kiri Engine 
[13], which leverage Apple’s RoomPlan SDK, allowed us to walk through the hallways of 
the environment and meticulously scan every surface, generating a scale-accurate 
representation. We had the option of using a triangular mesh scan or the RoomPlan 
mode, which constructs 3D objects to represent the geometry of walls, doors, and 
furniture. While the mesh scan mode produced more detailed and accurate 
representations, the RoomPlan mode yielded a much cleaner model. This significantly 
reduced aliasing artifacts and provided a more navigable environment for the robot, 
minimizing collisions with jagged or irregular geometry. 
 

​
Figure 6: KIRI Engine 3D model of Mattias’ 1 Bedroom Suite. 

To model the car itself, we adapted a basic RC car model provided by an Isaac Lab 
community project - Leatherback [18]. The geometry was scaled down and modified to 
better reflect the physical dimensions and properties of our specific RC platform, 
ensuring the simulation closely matched real-world behaviour. 

6.2.2.​ Reinforcement Learning Simulation Environment 
When selecting a simulation platform, we considered three main contenders: PyBullet, 
Gazebo, and Isaac Lab [19, 20, 21]. PyBullet is extremely lightweight and great for rapid 
prototyping; however, its lower physics realism makes it less ideal for tasks requiring 
accurate sensor feedback or contact dynamics. Gazebo, by contrast, is widely adopted in 
robotics and provides a stable, highly configurable environment for robotics 
development. It’s better suited to long-running, realistic simulations, though it lacks 
native reinforcement learning support and doesn’t easily scale to parallel workloads. 
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Ultimately, we selected NVIDIA’s Isaac Sim as our simulation platform. Designed 
specifically for robotics applications, Isaac Sim provides high-fidelity physics, 
GPU-accelerated rendering, and the ability to run multiple simulation environments in 
parallel, enabling efficient large-scale training. To effectively interface with Isaac Sim, we 
used Isaac Lab, a Python interface layer. This allows us to seamlessly utilize common RL 
frameworks such as Stable Baselines 3 and SKRL. A significant drawback of Isaac Sim is 
its heavy computational demand. NVIDIA specifies an RTX 3070 as the minimum 
supported GPU and recommends an RTX 4080 (~$1,500 CAD) or better for “good” 
performance. 

Despite the advantages of simulation, a key challenge introduced by not working directly 
with hardware is the sim-to-real gap. Subtle differences between the simulated 
environment and real-world conditions can lead to poor transfer of learned behaviours. 
This challenge further motivated our decision to use Isaac Sim, as its high-fidelity physics 
and sensor models help reduce these discrepancies. Additionally, Isaac Sim supports 
domain randomization, allowing us to expose the agent to a wide range of variations 
during training. This improves the model’s robustness and increases the likelihood of 
successful deployment in real-world scenarios. 

6.2.3.​ Training Environment Creation 
Once the environment and robot models were complete, we developed a new training 
environment based on the third floor of the Engineering Lab Wing. To structure this 
space for navigation, we divided it into 49 distinct regions, each representing a physically 
separated or semantically meaningful location. These regions formed the basis of a 
waypoint-based navigation system. 

 
Figure 7: Regions formed in the Training Simulation. 
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Initially, our approach was to train separate models for each navigation goal. The idea 
was that each model would specialize in reaching a specific destination, and at the start 
of each episode, the robot would be spawned at a random region along a route to that 
destination, facing toward the next waypoint. This required the agent to learn to 
progress through the route step-by-step using local observations. 
 
However, we recognized a critical limitation - routes that require turns of different 
directions at locations that are perceptually identical to LiDAR were fundamentally 
impossible without additional context. To resolve this, we introduced a Visual Place 
Recognition (VPR) system, discussed further in Section 6.3.2, which allowed the robot to 
more reliably identify its current region among the 49 possibilities. 
 
With this capability in place, we revised our training approach to use a single unified 
model. Instead of relying on region-specific training, we added two additional features 
to the agent’s observation space: an 8-directional encoding of the relative direction to 
the next waypoint (e.g., North, South-East). This enabled us to randomize both the 
starting location and orientation at the beginning of each episode, and simply instruct 
the agent which direction the next waypoint lies in. Routes between any two regions are 
generated using an A* pathfinding algorithm, and in cases where no valid route exists, 
the agent is trained to remain idle. 
 

 
Figure 8: Training Environment Composite Reward.  

 
The reward function used during training was composed of 12 weighted terms, each 
designed to reinforce or discourage specific behaviours, as shown in Figure 8. The most 
significant components included: rewards for progressing along the route and reaching 
waypoints, incentives for maintaining higher velocity, and penalties for proximity to walls 
or collisions. 
 
With this finalized environment structure, the robot receives a 36-dimensional 
observation vector, which is passed into an SKRL Proximal Policy Optimization (PPO) 
model. The model outputs two continuous action values: throttle and steering. The 
observation vector includes the two most recent actions to provide temporal context, 28 
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LiDAR distance readings spaced every 10° from –135° to +135°, the gyroscope’s yaw rate, 
the linear acceleration from the accelerometer, the sine and cosine of the robot’s global 
heading, and two values encoding the cardinal direction of the next waypoint relative to 
the current position. 
 
6.2.4.​ Narrowing Sim-to-Real Gap 
Unfortunately, despite the significant advancements in simulation technology offered by 
Isaac Sim, it is still not sufficient to fully bridge the sim-to-real gap. Small discrepancies 
between the simulated environment and real-world conditions often result in trained 
behaviours failing to transfer effectively to the physical platform, despite strong 
performance in simulation. This challenge was a persistent issue throughout 
development. 
 
To mitigate this, we implemented a range of domain randomization techniques intended 
to improve the robustness of the trained model. Observation and action delays were 
introduced into the simulation to match the measured latencies on the real system. 
Gaussian noise and dropout were applied to the simulated LiDAR readings to increase 
tolerance to sensor noise and modelling inaccuracies. Additionally, randomized biases 
were added to both throttle and steering commands to simulate discrepancies between 
the simulated car and the final platform.  
 

 
Figure 9: Graphs of IMU Performance. 

 
To reduce the gap between the physical characteristics of the platform and the 
simulated car, we ran identical drive profiles on both systems and recorded the resulting 
IMU data. We then overlaid and compared these plots, as shown in Figure 9,  to 
iteratively refine the simulated car’s behaviour until it closely matched the dynamics of 
the real platform.​
​
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Despite these measures, we continued to encounter overfitting-related issues. While the 
model could complete all simulated point-to-point routes reliably within the simulation 
after extended training, its performance degraded in the real world. This indicates a 
sensitivity to imperceptible simulation-specific details that do not generalize. Further 
analysis is provided in Section 8 – Testing & Validation. 

6.3.​ Platform Software and Integration 
To run the final trained model on the platform and support additional tasks such as the 
Visual Place Recognition system and the OpenAI scene description script, we developed 
a web app frontend using Plotly Dash. This frontend interfaces with a centralized 
controller class, which initializes and manages a collection of subsystems and drivers. 
Each subsystem inherits from a common base class that defines a consistent initialization 
structure and interaction scheme, ensuring clean and modular integration across the 
following independent components. Each of the following subsystems is designed to run 
in asynchronously threaded loops to ensure non-blocking operation and responsive 
performance across the entire system. 
 
6.3.1.​ Inference Loop 
This is the most critical subsystem, responsible for processing observations from the 
environment and computing the appropriate action using a GaussianPolicy neural 
network. The resulting action is returned to the controller, which monitors the Pi’s GPIO 
to check if the trigger on the cane’s handle is depressed. If so, it issues throttle and 
steering commands to the Electronic Speed Controller and servos via our 
PWMController driver. 
 
6.3.2.​ Visual Place Recognition 
The Visual Place Recognition (VPR) subsystem handles localization. The controller passes 
an input image from the Pi Cam driver to the VPR script, which converts it into an 
embedding using the efficientnet_b0 visual transformer [13]. This embedding is then 
compared via cosine similarity against a database of 2,450 precomputed embeddings, 
representing 50 embeddings per identified region. These were generated from over 
18,000 images captured throughout the ELW building. 
 
The VPR subsystem returns a ranked list of the most probable regions along with 
confidence values for each. While the full point-to-point navigation system would use 
these outputs to determine cardinal directions toward the next waypoint, our current 
implementation allows the user to define a stopping destination. As the generalized 
navigation model drives, if the VPR identifies the specified region with confidence above 
a set threshold, the car applies full braking to signify that it has reached the target 
destination. 
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6.3.3.​ OpenAI Scene Descriptor 
The controller monitors the state of a secondary switch on the cane. When this switch is 
pressed, the most recent image captured by the camera driver is sent to the observer 
subsystem. The image is resized, compressed, and base64-encoded before being sent to 
the OpenAI image recognition endpoint with a prompt tailored for users with visual 
impairments. 
 
The resulting scene description is returned by the API, then sent to OpenAI’s 
text-to-speech endpoint to generate an MP3 audio file. This file is returned to the 
controller, passed to the frontend, and finally received by a JavaScript function that 
autoplays the audio for the end user directly from the web app. 
 
6.3.4.​ Shared State Subsystem 
To facilitate reliable communication between subsystems in a multithreaded 
environment, we implemented a centralized telemetry subsystem. This shared state 
manager ensures thread-safe data exchange, avoiding race conditions and enabling 
clean, consistent interaction across all components. Each subsystem reads from and 
writes to this centralized structure to publish internal state and access data from other 
parts of the system. 

7.​ Design & Prototype 
The working prototype depicted in Figure 10 below combines an ergonomic cane and a 
lightweight smart RC-car platform to deliver autonomous indoor guidance and real-time 
scene narration for visually-impaired users. Every major subsystem specified in Section 3 
was realized and integrated. A summary of how the prototype satisfies or partially 
satisfies the project objectives is shown below in Table 1. 

 
Figure 10: A Photo of the Cane (left) and AutoNav (right). 
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Table 1: A Summary of the Objective Criteria. 

Objectives Status Notes 

Training a Proximal Policy Optimization 
(PPO) reinforcement learning model 
for autonomous navigation from an 
accurate simulation environment and 
robot model in Nvidia’s Isaac Lab 

Met We produced our RC chassis and corridor environments in 
Isaac Lab accurately, and trained a PPO policy for ~ 6 
million steps with domain randomization and transferred 
the quantised weights to the Pi 5, where the corridors at 
around 0.9m/s with less than 10% collisions. 

Integrating a planar LiDAR sensor and 
Camera for environmental scanning 
and real-time scene analysis 

Met A LiDAR sensor supplies obstacle vectors while a Pi Camera 
streams frames to OpenAI’s Vision and Text-to-Speech 
functionality for scene descriptions. Combined, they yield 
an 80ms description latency and a 1.8s end-to-end scene 
narration. 

Develop control logic for the user 
interface 

Met A dual trigger handle feeds a finite-state controller on the 
Pi, allowing users to toggle between autonomous 
navigation or scene description with spoken feedback via 
Bluetooth. 

Design and build an autonomous 
vehicle capable of path navigation and 
obstacle avoidance 

Partially 
Met 

The autonomous navigation platform, powered by a Pi 5 
and Lithium-ion pack completes ~2 hour runs, executing 
PPO-based steering and LiDAR safety bubbles that clear 90 
degree hallway turns and static obstacles. 

 
The fourth objective outlined in Table 1 above was only partially achieved, primarily due 
to time constraints. Although AutoNav reliably detects and avoids obstacles, it does not 
yet compute an optimal trajectory to the user-specified destination; instead, it reaches 
the intended path via a sub-optimal route. Testing also revealed a bias towards 
right-hand turns. This issue can be slated for correction through additional data 
collection, policy retraining and more time. 
 
Because the reinforcement-learning policy was trained exclusively in indoor 
environments, system performance degrades in some outdoor areas. In open areas 
lacking corridor boundaries, sporadic LiDAR returns can induce looping in circular 
patterns. Within buildings, however, AutoNav operates robustly and fulfills its primary 
design objective. 

8.​ Testing & Validation 
Due to the challenges outlined in Section 6.2.4. – Narrowing the Sim-to-Real Gap, the 
model that successfully completed all point-to-point navigation tasks within the ELW 
simulation was ultimately never fully functional on hardware within the limited 
2.5-month development timeline. Despite extensive domain randomization and 
simulation tuning, subtle discrepancies between the simulated and real-world 
environments consistently prevented reliable policy transfer. 
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To address this limitation, we shifted focus toward training a simplified, generalized 
navigation model. Rather than following predefined waypoint routes, this policy was 
trained to navigate down hallways, avoid obstacles, and maintain forward progress 
without relying on precise localization or route planning. Surprisingly, this lightweight 
model performed well in real-world tests, demonstrating reliable hallway-following 
behaviour and robust obstacle avoidance across various scenarios. While it lacks the 
goal-directed intelligence of the original approach, it served as a practical and effective 
fallback, enabling a functional demonstration of autonomous navigation under 
real-world conditions. 
 
The final prototype, equipped with the generalized model, was evaluated in both known 
and unknown settings. Trials took place in the Engineering Lab Wing (ELW) which is a 
known environment to the model as well as in several other UVic campus buildings and 
outdoor locations that were unfamiliar to the model as illustrated in Figures 11, 12 and 
13. Additional outdoor tests were also conducted to assess the prototype’s robustness 
under varied lighting and terrain conditions. 
 

 
Figure 11: Mattias testing the Generalized Model in a known indoor-environment. 

 

 
Figure 12: Eiden testing the Generalized Model in an unknown indoor-environment. 
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Figure 13: Jairus testing the Generalized Model outside. 

 
AutoNav consistently detected and avoided obstacles; however, the system showed a 
tendency to favour right-hand turns and only rarely executed left turns. This bias is due 
to a training set that emphasized right-turn avoidance maneuvers. Interestingly, the 
prototype performed better in the unfamiliar Clearihue building than in ELW, and it 
maintained reliable obstacle detection and avoidance outdoors, provided that the LiDAR 
sensor can detect obstacles in its vicinity. 
 
The Scene-Description subsystem was validated in a controlled indoor environment. 
Sample imagery captured by the Pi Camera is presented in Figure 14, while the 
corresponding caption output is displayed in Figure 15. Results met expectations, 
demonstrating accurate scene summaries suitable for user feedback. 
 

 
Figure 14: Pi Camera’s Output during the Testing Stage. 
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Figure 15: OpenAI API’s Text Output during the Testing Stage. 

9.​ Cost Analysis 
The cost analysis was broken down into three separate sections; the direct costs, the 
indirect costs, and the funding received. 

9.1.​ Direct Costs 
The direct expenses incurred in the completion of this project include purchases of 
various hardware components, materials, and supplies detailed below in Table 2. 

 
Table 2: A Table of Direct Costs for AutoNav. 

Item Cost (CAD) 

LaTrax Prerunner $223.99 

Raspberry Pi 5 8GB $156.79 

LD19 LiDAR $116.37 

Adafruit BNO085 IMU $49.67 

4x 18650 Cells $31.07 

6x 18650 + Charger $38.07 

UBEC Regulator $26.44 

JLC Custom PCB $19.50 

Pi Terminal Breakout Hat $21.26 

Battery Holders $16.79 

XT60H Battery Connectors $16.79 

Servo Leads $8.28 

M2.5 Standoff Kit $17.91 

1KG Polymaker PLA $38.07 

Stacking Header Kit $20.14 

Total Direct Costs $801.14 
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9.2.​ Indirect Costs 
Indirect costs include the value of labour hours invested, consultation fees, and 
overtime. The team’s cumulative labour hours are as follows: 
 

●​ Mattias’ hours: ~30 hours/week for 2.5 months at $40/hour 
 25. 6 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 × 10 𝑤𝑒𝑒𝑘𝑠 = 256 ℎ𝑜𝑢𝑟𝑠

 $40/ℎ𝑜𝑢𝑟 × 256 ℎ𝑜𝑢𝑟𝑠 = $10, 240
 

●​ Eiden’s hours: ~10 hours/week for 2.5 months at $40/hour 
 11 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 × 10 𝑤𝑒𝑒𝑘𝑠 = 110 ℎ𝑜𝑢𝑟𝑠

 $40/ℎ𝑜𝑢𝑟 × 110 ℎ𝑜𝑢𝑟𝑠 = $4, 400
 

●​ Jairus’ hours: ~12 hours/week for 2.5 months at $40/hour 
 15 ℎ𝑜𝑢𝑟𝑠/𝑤𝑒𝑒𝑘 × 10 𝑤𝑒𝑒𝑘𝑠 = 150 ℎ𝑜𝑢𝑟𝑠

 $40/ℎ𝑜𝑢𝑟 × 150 ℎ𝑜𝑢𝑟𝑠 = $6, 000
 

 ∑𝐸𝑎𝑐ℎ 𝑝𝑎𝑟𝑡𝑛𝑒𝑟'𝑠 ℎ𝑜𝑢𝑟𝑙𝑦 𝑤𝑎𝑔𝑒
 $10, 240 + $4, 400 + $6, 000 = $20, 640

9.3.​ Funding 
Funding received for this project includes: 

●​ Electrical and Computer Engineering Department Grant: $120.00 
●​ First Place Prize Money: $375.00 

Total Funding: $495.00 

9.4.​ Net Cost 
 𝐷𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡𝑠 +  𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡𝑠 −  𝐹𝑢𝑛𝑑𝑖𝑛𝑔 =  𝑁𝑒𝑡 𝑐𝑜𝑠𝑡

 $801. 14 + $20, 640 − $495. 00 = $20, 946. 14

9.5.​ Tentative Pricing & Return on Investment (ROI) 
Considering the total net cost of approximately $21,000, a viable market price must 
factor in at least a 50 to 60% markup to cover manufacturing, additional research and 
development, marketing, distribution, and profit margins. The exact pricing strategy will 
be refined through comprehensive market research, competitive analysis, and potential 
customer feedback. It is important to consider that the process can now be greatly 
reduced in hours since the structure of the product does not have to be recreated for 
each item. Arguably cutting the hours required to recreate this in half or to a third. The 
expected return on investment will be calculated based on anticipated sales volumes, 
production scalability, and market adoption rates, ensuring profitability and 
sustainability. 
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9.6.​ Cost Reduction 
Potential methods to reduce prototype costs include utilizing lower-cost alternative 
components with similar capabilities, and ordering components in bulk or from suppliers 
offering educational discounts. Additionally, incorporating open-source software and 
components can lower licensing and development expenses. Streamlining the overall 
design to eliminate redundancy and unnecessary complexity can further enhance cost 
efficiency, beneficial for further versions and possibly commercialization. 

10.​ Conclusion & Recommendations  
The AutoNav project successfully achieved its primary goal of designing and 
implementing a functional, low-cost autonomous navigation aid for individuals with 
visual impairments. All core objectives, including robotic platform development, 
environment mapping, user interface integration, and scene description, were met 
through an interdisciplinary approach that prioritized user safety, real-world 
applicability, and ethical engineering standards as guided by the EGBC Code of Ethics. 
 
Through a combination of reinforcement learning, LiDAR/Camera-based localization, and 
camera-powered scene understanding, the final prototype demonstrated robust indoor 
navigation and real-time auditory feedback capabilities despite hardware limitations.  
 
Several challenges were encountered throughout the design process. Power instability, 
hardware mounting limitations, limited computing power of the Raspberry Pi, and 
difficulty parsing real-time sensor data required interactive refinement of both electrical 
and mechanical subsystems – all of which were diagnosed and resolved, leading to a 
more reliable and consistent final prototype.  
 
For future iterations, the following improvements are recommended: 

1.​ Upgrade to a more powerful onboard computing platform, such as the Nvidia 
Jetson series, to enhance inference speed and generalization. 

2.​ Replace the camera module with a high dynamic range (HDR) camera to improve 
scene description in varied lighting conditions. 

3.​ Improve battery management and power delivery circuits for longer runtime. 
4.​ Expand testing into larger and more complex environments, including stairways, 

elevators, and areas with heavy foot traffic. 
5.​ Integrate user feedback loops from actual visually impaired users to guide further 

ergonomic and interaction design enhancements. 
6.​ Modularize the software even further for plug-and-play sensor support and 

easier field upgrades. 
 
AutoNav not only addressed a critical accessibility need but also demonstrated how 
student-led engineering projects can align with professional standards and societal 
impact goals. This prototype stands as a foundation for future iterations and broader 
research into ethical, AI-driven assistive technologies.  
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A.1​ Appendix A – EGBC Code of Ethics 

A registrant must adhere to the following Code of Ethics: 

Registrants must act at all times with fairness, courtesy and good faith toward all persons with 
whom the registrant has professional dealings, and in accordance with the public interest. 
Registrants must uphold the values of truth, honesty, and trustworthiness and safeguard human 
life and welfare and the environment. In keeping with these basic tenets, registrants must: 

1.​ Hold paramount the safety, health, and welfare of the public, including the protection of 
the environment and the promotion of health and safety in the workplace; 

2.​ Practice only in those fields where training and ability make the registrant professionally 
competent; 

3.​ Have regard for the common law and any applicable enactments, federal enactments, or 
enactments of another province; 

4.​ Have regard for applicable standards, policies, plans, and practices established by the 
government or Engineers and Geoscientists BC; 

5.​ Maintain competence in relevant specializations, including advances in the regulated 
practice and relevant science; 

6.​ Provide accurate information in respect of qualifications and experience; 
7.​ Provide professional opinions that distinguish between facts, assumptions, and opinions; 
8.​ Avoid situations and circumstances in which there is a real or perceived conflict of 

interest and ensure conflicts of interest, including perceived conflicts of interest, are 
properly disclosed and necessary measures are taken so a conflict of interest does not 
bias decisions or recommendations; 

9.​ Report to Engineers and Geoscientists BC and, if applicable, any other appropriate 
authority, if the registrant, on reasonable and probable grounds, believes that: 

a.​ The continued practice of a regulated practice by another registrant or other 
person, including firms and employers, might pose a risk of significant harm to 
the environment or to the health or safety of the public or a group of people; or 

b.​ A registrant or another individual has made decisions or engaged in practices 
which may be illegal or unethical; 

10.​Present clearly to employers and clients the possible consequences if professional 
decisions or judgments are overruled or disregarded; 

11.​Clearly identify each registrant who has contributed professional work, including 
recommendations, reports, statements, or opinions; 

12.​Undertake work and documentation with due diligence and in accordance with any 
guidance developed to standardize professional documentation for the applicable 
profession; and 

13.​Conduct themselves with fairness, courtesy, and good faith towards clients, colleagues, 
and others, give credit where it is due and accept, as well as give honest and fair 
professional comment. 
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B.1​ Appendix B – Website Link 
The Website link of the project can be found in the link: https://makro.ca/autonav. The 
main page image of the image is illustrated below in Figure B.1. 
 

 
Figure B.1: The Main Page of the Website. 
 

B-1 

https://makro.ca/autonav


 

C.1​ Appendix C – Youtube Video of AutoNav 
A video of testing the AutoNav in multiple environments can be seen in the Youtube link 
AutoNav Testing Video.  
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https://www.youtube.com/watch?v=OFew6IB7aUU&ab_channel=JairusAbad
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