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Abstract

This document describes the design and implementation of this group's ECE449 project,
being a 5-stage pipelined, 16-bit CPU, as this group dubs the HPU, or Hazard Processing
Unit. Specifically, it describes how the HPU handles the execution of the given ISA, and how
it handles hazards. After this, the report describes the results of this project, its

achievements, and its downfalls.
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Introduction

This project involves designing and implementing a 5-stage pipelined 16-bit RISC-style
processor on an FPGA. The provided Instruction Set Architecture (ISA) outlines three main
instruction formats our CPU must be capable of executing to functionally run provided
programs. Format A, B, and L instructions consist of arithmetic, branch, and memory
operations. Our CPU implements two memory units: a dual-ported RAM module for data and
instructions and a ROM unit containing a rudimentary BIOS used to communicate over the
input and output ports with an STM32 companion board for downloading programs.
Pipelined CPU architectures introduce significant efficiency improvements compared to
sequential instruction execution, however, implementation requires significant planning and
forethought due to the complexity and potential hazards introduced by the pipelined

architecture.

Objective

This project aims to develop a functional 16-bit CPU capable of running programs written in
the provided Instruction Set Architecture on FPGA hardware. This task requires a thorough
and well-thought-out architecture to function. This includes designing a datapath, instruction
decoder, ALU, branch logic, data and instruction memory, as well as a controller that can
effectively monitor for and clear potential structural and data hazards. The final CPU should
implement a 5-stage pipelined architecture. Pressing the “reset and load” button runs a BIOS
off of the ROM module that communicates with an STM32 bootloader via the processor’s
input/output. This will load a program from the STM32 into RAM. Pressing “reset and
execute” will jump the program counter to the first instruction in RAM to execute the

downloaded program.



CPU Architecture and Pipeline Design
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Figure 1: High-level CPU pipeline dataflow diagram.

The architecture of our 16-bit CPU follows the traditional 5-stage MIPS pipeline design,
consisting of instruction fetch, decode, execution, memory, and writeback stages. Figure 1
shows a high-level diagram of our dataflow, with individual signals left unlabeled to improve
readability given the density within each stage. Each of these stages, along with our
controller, will be outlined in detail throughout the rest of this section. The entire, unmodified

architecture diagram can be viewed in higher detail in Appendix A.

To separate each stage, our architecture uses four separate latches: IFID_latch,
IDEX_latch, EXMEM_latch, and MEMWB_latch. These latches are synchronous and
update their outputs to match their corresponding input signals on the rising edge of the CPU
clock. Additionally, each latch implements synchronous resets and enables, which are
manipulated by the controller discussed at the end of this section. These latches are
essential for holding stable values within each stage during program execution and for
preventing race conditions. Specifically, IFID_latch holds the fetched instruction to be
decoded, IDEX_latch stores decoded operands and control signals for execution,
EXMEM_latch carries ALU results along with memory and writeback control signals to the
memory stage and also latches the incremented PC, while MEMWB_latch holds the data to

be written back to the register file.



Stage 1 - Instruction Fetch
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Figure 2: Instruction Fetch Pipeline Stage.

Our CPU uses two separate memory modules: a ROM for storing a rudimentary BIOS and a
dual-ported RAM module for program instructions and data storage. Both ROM and RAM
modules have a capacity of 1024 Bytes and perform asynchronous reads with the enable bit
set persistently high. For our CPU to address the ROM and RAM modules separately,
memory addresses 0 through 1023 are reserved for ROM, while addresses 1024 through
2047 are allocated for RAM. Therefore, a read from memory address 1024 should read from
index 0 of the RAM module.

To perform this address conversion, we use the MEM_SEL module as shown to the left of
the ROM module in Figure 2. MEM_SEL truncates PC_MEM to isolate the lower 10 bits
such that a PC_MEM of 1028 is converted to an instr_addr_MEM value of 4, allowing for
the correct addressing of RAM. However, both ROM and RAM will always read from
instr_addr_MEM and return the contents of that memory address to their corresponding
dout_MEM signals. To select between these two results, the MEM_SEL unit isolates bit 11
of PC_MEM and passes it to a MUX such that the result from ROM is selected if the PC is
below 1024, and RAM will be selected if it is greater (bit 11 is set).

The resulting MUXed instruction in instr_MEM, as well as the corresponding program

counter in PC_MEM, are routed to the IFID latch to be decoded in the following clock cycle.



Stage 2 - Instruction Decode
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Figure 3: Instruction Decode Pipeline Stage.

Our instruction decoder stage latches incoming instructions from the fetch stage and extracts
bits [15:9], which contain the instruction’s opcode. This opcode is used in a case statement
to determine the instruction format, operand sources, and required control signals. The
Instruction Set Architecture (ISA) defines three major instruction formats: Format A, B, and

L, which correspond to arithmetic, branch, and memory operations, respectively.

The opcode_ID signal specifies the instruction type for the Branch Logic unit, while
alu_mode_ID defines the ALU operation to be performed. If the instruction requires a result
to be written back to a register, wb_en_ID is asserted, and wb_idx_ID specifies the
destination register. Memory operations are flagged by asserting mem_rd_en_ID or

mem_wr_en_ID for reads and writes, respectively.

Instructions that read from the register file will specify source addresses using rd_idx1_ID
and rd_idx2_ID, and the results will be available at rd_data1_ID and rd_data2_ID. The
values in rd_data1_ID can be conditionally masked using a bitwise AND with mask_ID,
which is useful for isolating the upper or lower byte in LOADIMM instructions or for forcing

in1_ID to zero if required. By default, mask_ID is set to OXFFFF, applying no masking.

For instructions involving immediate values, the decoder will assert imm_en_ID to MUX
in2_ID to the immediate value provided by imm_val_ID, overriding the default value read

from the register file at address rd_idx2_ID.



For an IN instruction, the decoder reads the value from the in_port signal and passes it as
an immediate value, wb_en_ID is asserted, and wb_idx_ID specifies the destination register
address.

For writing to the output port, OUT instructions assert out_flag_ID and read the source
register via rd_idx1_ID. In the execution stage, the controller monitors the value of
out_flag_EX; if asserted, the controller will latch the value in in1_EX to the processor's
out_port.

Stage 3 - Execution
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Figure 4: Execution Pipeline Stage.

ALU operations specified by the alu_mode_EX signal drive the ALU to perform arithmetic
operations on the contents of the in1_EX and in2_EX signals, outputting the result to
alu_result_EX. For TEST operations, the ALU asserts z_flag_EX and n_flag_EX if the
value of in1_EX is zero or negative, respectively. When the CPU performs memory
operations, alu_mode_EX is set to no op, allowing us to pass the memory address through
the ALU from in1_EX to alu_result_EX. If writing to memory, in2_EX contains the data to

write and is passed directly to the EXMEM_latch.

The Branch Logic unit monitors the opcode_EX signal to correctly manipulate the program
counter, depending on the operands of the instruction in the execution phase. For
non-branch operations, the Branch Logic unit sets PC_EX, the program counter for the next

fetched instruction, to PC_MEM + 2 to point to the next instruction word in memory. If a



branch operation is specified by opcode_EX, the Branch Logic unit checks the values of
z_flag_EX and n_flag_EX to determine whether a conditional branch should be taken.
Branch offsets are decoded as immediate values and read from the in2_EX signal. For
relative branches, PC_IDEX contains the address of the currently executing instruction, and
the resulting program counter PC_EX is calculated as PC_IDEX + 2 * in2_EX. For absolute
branches, the value in register ra is read into in1_EX, and PC_EX becomes in1_EX + 2 *
in2_EX.

The signals branched_EX and PC_wb_EX indicate whether a branch was taken and the
value of the program counter before the branch, respectively. For BR.SUB operations,
wb_en_EX must be asserted, and wb_idx_EX must address r7. In this case, PC_EX is set
to the contents of in1_EX and branched_EX MUXes the value of result_EX to PC_wb_EX
rather than the default alu_result_EX, and is, as a result, written back to r7. When a
RETURN operation is executed, PC_EX is vectored back to the program counter before the

branch, stored in r7.

The stall_EX flag is asserted by the controller if a RAW hazard is detected and will prevent
the Branch Logic unit from incrementing the program counter. When signals rst_Id and
rst_ex are asserted, the program counter is vectored to the values 0x0002 and 0x0000,

respectively. This is imperative for user interaction with the BIOS code within the ROM.



Stage 4 - Memory Operations
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Figure 5: Execution Pipeline Stage.

Within the instruction decoder stage of our pipeline, if a memory operation is detected, the
mem_wr_en_ID and mem_rd_en_ID control signals are asserted for memory write and

read operations, respectively.

In the memory stage of the pipeline, if the instruction does not require memory access, both
mem_wr_en_MEM and mem_rd_en_MEM will be deasserted, ensuring the ALU result in

result_MEM is passed directly to the writeback path.

However, if the instruction requires a memory read, the decoder will have asserted
mem_rd_en_ID and wb_en_ID, and specified wb_idx_ID, as to write back the read value to
the specified register. A read on RAM port A is enabled by mem_rd_en_MEM, and douta
will return the value stored at the address specified by result_ MEM, which was passed
through the ALU. The mem_rd_en_MEM control signal MUXes wb_data_MEM to select the

read value from dout_MEM instead of the default ALU result.

Alternatively, if the instruction performs a memory write, mem_wr_en_MEM will be asserted,
result_MEM will specify the address, and din_MEM will contain the value to write, passed

through the execution stage in signal in2_EX.
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Stage 5 - Writeback
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Figure 6: Execution Pipeline Stage.

If the result of an instruction requires to be written back to a register, the decoder would
assert wb_en_ID and specify the destination with wb_idx_ID. These values are latched and
would travel along with the instruction operands as they pass through our pipeline. On the
rising clock edge, the MEMWB latch will latch the final wb_en_WB, wb_idx_WB, and
wb_data_WB values. At the following falling clock edge, our register file will write the
contents of wb_data_WB to the register specified by wb_idx_WB if the wb_en_WB signal
is asserted.
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Controller - Hazard Management
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Figure 7: Controller Relevant Signals and Modules

Due to the added complexity of a pipelined implementation, the controller must detect and
handle two major types of hazards. The first is a Read After Write (RAW) hazard, which
occurs when an instruction in the decode stage attempts to read a register that is still waiting
to be updated by a previous instruction that has not yet reached the writeback stage. Without
proper handling, this would result in the instruction reading a stale value, leading to flawed

program execution.

To address this, the controller monitors signals across all pipeline stages and implements an
8-bit pending_wb register, which tracks whether a register has an incoming writeback. Once
an instruction passes the IDEX latch, it is considered to have begun execution. If the
controller observes wb_en_EX asserted, the bit in pending_wb corresponding to
wb_idx_EX is set. Conversely, in the writeback stage, if wb_en_WB is asserted, indicating a

value is being written to the register file, the corresponding bit for wb_idx_WRB is cleared.

Within the decode stage, the controller checks the source registers specified by rd_idx1_ID
and rd_idx2_ID. If either of these addresses has a corresponding bit set in pending_wb, the
instruction must stall until the writeback completes and the bit is cleared. In this case, the

controller asserts stall_EX, preventing the program counter from incrementing, and

12



de-asserts IFID_en, holding the current instruction in the decode stage. It also asserts
IDEX_rst, which flushes the execution stage on the next rising clock and effectively inserts a
No-op, allowing the pipeline to continue moving without extending the execution of a single
instruction over multiple clock cycles. Once the writeback clears the corresponding bit in
pending_wb, the controller de-asserts stall_EX and IDEX_rst and re-enables IFID_en,

allowing the pipeline to resume normal execution.

The Branch Logic unit implements no branch prediction behavior; even in the case of an
unconditional branch, we assume the branch is not taken and fetch the following instruction
at the program counter + 2. This introduces a control hazard as if the branch is taken in the
exection stage, the following instructions are already in the fetch and decoder stages and will
break program flow if allowed to execute. Therefore, our controller monitors the
branched_EX signal from our Branch Logic unit. If the signal is asserted, indicating a branch
was taken, then we assert both IFID_rst and IDEX_rst, such that in the following clock
cycle, the fetched instruction will be at the correct program counter, and the invalid
instructions are replaced with No-ops are in both the decoder and execution stages, while
the branch and prior instructions propagate through the rest of our pipeline. This effectively

flushes our pipeline, ensuring no control hazards.

Additionally, when the reset_ld and reset_ex signals are asserted, the controller will assert
signals IFID_rst, IDEX_rst, EXMEM_rst, MEMWB_rst, reg_rst, and alu_rst, effectively
reinitializing our pipeline and registers to default values. Our controller performs all actions
on the falling clock edge. This ensures that all values read by the controller have already

been latched and that any actions taken will be applied in the following rising edge.

13



Results

In this section, we compare two metrics describing the Hazard516 core, being the frequency

or max clock rate, and the hardware utilization

Hardware Utilization

Firstly, to evaluate our system, we ran the synthesizer and checked the hardware utilization

of our system. The figure below shows the result of this procedure:
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Figure 8: List of hardware components and their utilization

To further understand the hardware utilization of our system, we put together the following

bar chart, where the utilization is shown in terms of percentages:

Percentage Hardware Utilization
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10 I
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Figure 9: Percentage Ultilization of RAM and HPU system (HPU includes RAM).
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Simulation Screenshots

In this section, we will showcase the simulation screenshots demonstrating the core
functionalities of the HPU. Note that all of these screenshots are available in a larger, rotated

format in appendix B.

Format A
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> ™ r0_tb[15:0]

Figure 10: Format A timing diagram

The timing diagram above shows the execution of the following instructions:

PC Instruction

ADD RO R1 R2
0x0008 0x020A: 0000001 000 001 010

MUL R2 R2 RO
0x000A 0x0690 : 0000011 010 010 000

SUB R1 R3 R
0x000C 0x045D : 0000010 001 011 101
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The first incoming instruction shown is 020a, which translates to ADD RO, R1, R2.
This instruction appears at approximately 17.5 ns in the simulation.

. At the 24ns mark at the in1_tb and in2_tb signals, you can see that in1_tb and
in2_tb go to 1 and 2, respectively. These signals correspond to the inputs of the ALU
in the execution stage of our pipeline. These signals are the latched result of the two
register file read operations at the decode stage of the pipeline, with R1 containing
the integer 1 and R2 containing the integer 2 for demonstration purposes.
Simultaneously, we can see that alu_mode_tb changes to 1, which puts the ALU in
the addition mode, computing the addition of in1 and in2. Additionally, when the
instruction is at this stage (R0 <- R1 + R2), the next instruction is being latched into
the IFID latch, which happens to be MUL R2, R2, R0O. Because this next instruction
requires the contents of RO, which has not been written to yet, the controller unit
recognizes this and sets the stall flag high, which one can see at the signal stall_tb,
which stalls the pipeline until RO has been written to.

The output of the ALU is asynchronous, processed, and written to the EXMEM
latched, which brings the operation to the memory stage. Here, at 32ns, one can see
that the wb_en_tb signal goes high. This is the register write back signal at the
memory stage. We can see here that the write back was correctly asserted as per
the requirements of the instruction.

. Additionally, at the same time, one can see that the wb_data_tb line turns to the
value 3, which shows the ALU correctly computed the addition of 1 + 2, and that this
signal is about to be written back to RO. If we had not chosen RO as the writeback
register, one would see the signal wb_idx_tb change to the address of the register to
be written back to (in this case, it's R0). At the end, these three signals, wb_en,
wb_data, and wb_idx, are passed through to the MEMWB latch, which when
clocked, brings them to the write back stage.

. At the writeback stage, the three signals previously mentioned are presented to the
write ports of the register file and are written to the register file on the following falling
clock edge. In this case, one can see at the bottom of the timing diagram that the

register RO now contains the value 3.
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Format B
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Figure 11: Format B timing diagram

Firstly, note that the instructions at play here are:

PC

Instruction

BRR 4

0x0000 0x8004: 1000000 000000100

ADD RO R2 R4

0x0008 0x0214 : 0000001 000 010 100

BR 4

0x000A 0x8604 : 1000011 000000100

1.

At the start of the timing diagram, one can see by inspecting the instr_ifid_tb signal
that the first instruction to appear is the 0x8004 instruction, which is BR + 4. At this
point, the instruction is at the decode stage, in which the opcode is sent directly to
the IDEX latch, to be ready for the execution stage. Additionally, the immediate value
of + 4 is passed through the immediate value MUX (at the decode stage), with the
immediate value enable signal going high. In this way, the pipeline chooses to pass
through the immediate value given by the instruction rather than the rd_data2 of the
register file. This immediate value is, like the opcode, given to the IDEX latch to be
used by the execution stage.

In the next stage, being the execution stage, the immediate value along with the
opcode, and the program counter are given to the branch_logic block, which
executes both increases the program counter by twice the specified amount (to
preserve the byte addressable nature of the memory unit), sets the branched signal

17



high. The branched_tb signal can be seen under alu_mode_tb signal, and one can
see that it is raised high at 7ns due to this instruction. At the same time that this
instruction is at the execute stage, the instruction at 0x0002 is being decoded. In this
case, the instruction at 0x0002 is a NOP.

The next stage is the memory stage, in which the next instruction is prepared to be
brought into the decoder. With the new program counter, the memory is ready from
0x0008, where our next instruction is. However, at this stage, the instruction at
0x0002 is being executed. To avoid this instruction making any unintended memory
writes, we have to “flush the pipeline”. In which, we turn the program counter to
OxFFFF, reset the IDEX latch, and pass NOPs through. In this way, the instruction at
0x0002 is “thrown out”. If one looks at the pc_ifid_tb signal, starting at 12ns, they
would see the program counter turn into OxFFFF, and then turn to 0x0008, which
indicates that the next instruction, already at the execute stage, is from 0x0008.

The instruction at 0x0008, being ADD RO, R2,R,4 is written back, which can be seen
at 16ns, where the wb_data_tb signal changes to 0x0004, writing back the number 4
to RO.

In the next stage, at the same time that the instruction at 0x008 is being executed,
the instruction at 0x000A, which happens to be BR 4, is being decoded.

. At the next stage, BR 4 is in execution, where the branch logic unit changes the
program counter to 0x0008 (double the immediate value, 4), and the pipeline is
flushed to get rid of the instruction at 0x000C.

. After this, an infinite loop occurs as the pipeline bounces between the instructions at
0x008 and 0x000A, which can be seen as the branched_tb periodically goes high.
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Format L

& global_clk_tb
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> W wb_data_tb[15:0]

Figure 12: Format L timing diagram

Note that the figure above shows the execution of the program shown below:

PC

Instruction

Loadimm Upper 4

0x0008 0x2504: 0010010 1 00000100

Loadimm Lower O

0x000A 0x2400 : 0010010 0 00000000

Loadimm Upper 37

0x000C 0x2525 : 0010010 1 00100101

1.

Firstly, the program starts at 0x008 when the instruction 0x2504, which happens to
be Loadimm.Upper 4, is loaded into the IFID latch, where, in a clock cycle, it is
decoded. One can see the instruction loaded in at the blue signals at the top of the
timing diagram, specifically at 20ns. In the decoding stage, the immediate value is
prepared for the execution and, eventually, the write back stage, on top of which, the
pending write back flag is asserted for R7 (as seen on signal pending_wb_tb [7] at
22ns). Thus, in this stage, the contents of R7 are read, and its upper bits are masked
to 0. Since RY7 initially contained the value 0x0007, then became 0x0007 (didn’t
change as the upper 8 bits are already 0x00. Additionally in this stage, the immediate
value flag is set high, which lets the immediate value of 0x0400 pass through to the
IDEX latch, ready for the next stage. The last thing to consider, is that in this stage,
the decode asserts the ALU mode to be “001”, which in the next stage will set the
ALU into the “addition” mode.

In the next stage, the ALU is set to add the two numbers at its input, being 0x0400
and 0x0007, which can be seen at the two signals in1_tb, and in2_tb, which change
to their respective values at 24ns. Additionally, when the first instruction being
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Loadimm.Upper 4 is being executed, the next instruction being Loadimm.Lower 0 is
being decoded. At this time, a RAW error is detected, as the second instruction
requires the contents of R7 while its pending-write back flag is asserted. To address
this, the controller sets the stall flag high (as seen at 25ns), which halts the decoder
until R7 is written to, and its pending-write-back flag is lowered. Only after this, can
the pipeline proceed.

3. At the memory stage, the write back index of 7, the write-back data of 0x0407, and
the wb_en line is passed through to the MEMWB latch.

4. At the write-back stage, the data of 0x0407 is written to R7, and the pending_wb
flag is set low, but then set high again as the next instruction, Loadimm.Lower 0, also
writes back to R7.

Discussion

The Hazard516 processor lacks at least 2 basic features, firstly being the ability to execute
push and pop instructions, and secondly, the ability to perform branch prediction. Push and
pop instructions, and by extension, the stack, is an important part of a CPU, as it allows for
subroutines and other programmatic structures to be written easily, as manual context
switching would not be needed, and would allow for easier storage of local variables in
memory. For this reason, if given more time, once we would have confirmed a working
minimum viable product, the push and pop instructions would have been our first or second

point of improvement.

Branch prediction would also be important for us to implement once the minimum viable
product is working. This is because even a simple branch prediction algorithm such as a
pattern history table can greatly reduce the number of stalls our system would have to
undergo, which would increase the overall CPI of our system. This would, unfortunately,
require a complete re-working of out stall and flush systems, which would take a

considerable amount of effort.

One feature that the Hazard516 does implement well is the automatic RAW hazard control,
in which write-back pending flags are raised for each register in the register file, and if an
instruction needs to read from a register that hasn’t been written to yet, the system will stall
until the register has been written to. This allows the programmer to not have to conditionally

insert NOPs to avoid these hazards.

20



Throughout the design and testing process, we found more than a few errors that had to be
overcome to move towards a working solution. Below, we will highlight three of the most

significant challenges we faced.

Firstly, we had the following problem with the stall logic:

Consider the following program:

1. Loadimm.Upper 0x50
2. Loadimm.Lower 0x07
3. Add R7 R4 R7

Note that all three of these instructions read and write to R7.

In any program, it was common to have two load-immediate instructions followed by an
instruction that would read from R7 ( the registers that load-immediate instruction uses).
When the first load-immediate instruction was at the execute stage, the stall flag went high
(to avoid RAW hazards as the next instruction being LOADIMM.lower needed to read from
R7), and we simply just stopped the IDEX latch but did not clear the contents of the ALU and
other units in the execute stage. This led to the instruction continuing to move through the
pipeline and, additionally, becoming duplicated for as long as the stall bit was high. This was
ok if only two instructions were reading from R7, but if there was a third instruction, there
was enough time for the first instruction to propagate through and write back to the register
file when the third instruction was decoded. The write-back of the duplicate first instruction
would end up clearing the write-back pending flag that the second instruction set. This flag
was set by the second instruction (loadimm.Lower 0x07) specifically so that the third
instruction would wait to read from R7 until R7 was written to by the second instruction. So
now, the R7-pending write-back flag raised by the second instruction is wrongfully lowered
by the first instruction, which was duplicated during the stall, and the third instruction is
wrongfully allowed to read from R7. In this way, a RAW hazard occurs. To fix this issue, we
added extra functionality to the stall flag, in which if the stall flag is raised, the IDEX latch
produces a NOPs after one clock cycle to avoid duplicating instruction. Additionally, we

made the IDEX latch respond to the rising edge of the clock.

After fixing this problem, we found another issue, this time with the branch relative
instructions. Specifically, as noted before, we implemented the branching control in the
execute stage of the pipeline. Before implementing stalling, we found that to find the

program counter to branch relative to (the program counter that came with the instruction,
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we simply had to subtract 4 from the current program counter. But once we stalled, the
current program counter was now offset even more from the instruction at the execute stage,
and as such, we would begin to branch relative from the wrong location. For this reason, we
had to now make another program that would move through the pipeline along with the
instruction being executed. In this way, the branch control logic would now always see the

correct program counter, and we would branch from the correct location.

Finally, after integrating both the RAM and the ROM units into our design, we had to add
special logic which would, based on the program counter, select whether the next instruction
was to come from the RAM, or the ROM. This was no problem and we implemented this by
making a 1:2 decoder circuit, whose outputs we controlled by the 11th bit of the program
counter. If the program counter was above 1023, its 11th bit would go high, and this decoder
would select the RAM unit to be read from, rather than the ROM unit. The problem we found
in the end was that we forgot to implement a correction for the LOAD and STORE
instruction. For example, if the loaded program were trying to store at address 1030
(address 6 in the RAM), we would not correct and find address 6 in the RAM, rather we’'d
look for address in RAM, which is not correct. In the end, we found this error too late (mere

minutes before the presentation), we unfortunately could not fix this issue in time.

In the end, we presented our project to the TA, and our processor was evaluated. Physically,
our processor was shown to be able to run every instruction in the boot loader code, even
reading and writing through the in and out ports. However, once it had finished executing
the boot loader code, it unfortunately had trouble running the new program stored in RAM.

This was due to the issue described in the paragraph above.

The processor's overall speed was not measured due to lack of time, as we had not gotten a
full solution by the time of the presentation. To measure the speed in simulation, we tried to
get Vivado to do a timing analysis of the processor, but the timing information, specifically
tco_min, tco_max, and other critical delay information, was not provided by the course, nor
was it provided on our FPGA's (the XC7A35T-1CPG236C) datasheet. For this reason, we

could not find the min slack time nor the max clock rate of our processor.

In terms of hardware utilization, the bar chart in Figure 8 in the results section shows the
total hardware usage of the HPU system, including the RAM and the console, and then in
purple, the RAM itself. The chart shows that the HPU used just a fraction of the available
space on the FPGA we used, being the XC7A35T-1CPG236C, including the display module

provided to us by the lab technician, Brent Sirna.
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Additionally, this figure shows that the RAM took up the vast majority of the space within
the system. If we were to design this for a smaller system, the RAM module would have the

largest priority to shrink.

Conclusion

Over the duration of this semester, we used Vivado 2017.4 to build a 5-stage pipelined,
16-bit CPU, dubbed the Hazard516, or HPU (standing for Hazard Processing Unit). It was
shown through simulations and hardware implementation that it could run all A, B, and L
format instructions found in the ISA reference manual [1]. It was shown to complete all of the
instructions given in the boot loader code but had trouble using a program stored in RAM.
We were able to implement automatic RAW hazard control and pipeline flushing when
branched. The RAW hazard control allowed for the programmer to not have to specify NOPs
when writing assembly, increasing program development time and simplicity. The HPU could
have benefited from the addition of push and pop handling and branch prediction, which
would have increased the overall CPI of the processor.

In the end, we dove into the intricacies of CPU design and became very familiar with the
workings of a basic pipeline. We learned about all the hazards that come with a pipeline and
how to mitigate them. Additionally, we learned about the boot-loading process and how a
CPU loads programs. And, of course, we became quite familiar with the Vivado EDA tool
and the workings of the VHDL language. These skills will set us up well for a future job in
CPU architecture or any position in digital design.

References

[1] “ECE 449: Instruction set (16-bit)”, University of Victoria Department of Electrical and
Computer Engineering, https://www.engr.uvic.ca/~ece449/lab/index.html
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Appendix B

&|global_clk_tb
™ pc_mem_tb[15:0]
™ instr_mem_tb[15:0)
™ pc_ifid_tb[15:0]

W instr_ifid_tb{15:0)
™ pc_idex_tb[15:0]
™ instr_idex_tb[{15:0]

™ instr_e _tbo[15:

™ pc_memwb...b[15:(

™ instr_me_ th[15:0]
™ opcode_tb{6:0]
™ in1_tb[15:0]
™ in2_tb[15:0)
™ alu_mode_tb[2

& branched_tb

™ rd_idx1_tb[2:0]

M rd_idx2_tb[2:0]
# wb_en_tb

™ wb_data_tb[15:0]
™ wb_idx_tb{2:0]
™ r0_tb[15:0]

iming diagram

Format A t
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diagram

Format B timing
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¥ global_clk_tb
™ pc_mem_tb[15:0]

™ instr_mem_tb[15:0
™ pc_ifid_tb{15:0]

™ instr_ifid_tb{15:0]

™ pc_idex_tb[15:0]

™ instr_idex_tb[15:0] § 0000
™ pc_exmem_tb{15:0§ fiff
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™ pc_memwb...b[15:(q fiff

™ instr_me_.tb[15:0] | 0000
™ opcode_tb[6:0] uu
™ in1_ib[15:0] uuuu
™ in2_tb[15:0] uuuu
™ alu_mode_tb[2:0] | U

& branched_tb

¥ stall_tb

™ rd_idx1_tb[2:0]

™ rd_idx2_tb[2:0]

¥ wb_en_tb

™ wb_data_tb{15:0]

Z8 n

ming Diagram

I

Format L Ti
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Appendix C

Hpu.vhd

Company:

Engineer:

Create Date: 02/28/2025 10:14:01 AM
Design Name:

Module Name: hpu - Behavioral
Project Name:

Target Devices:

Tool Versions:

Description:
Dependencies:

Revision:
Revision 0.01 - File Created

Additional Comments:

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;




## REAL IO
global clk : in STD LOGIC;

rst ex : in STD LOGIC;
rst_ld : in STD_LOGIC;

in port : in STD LOGIC VECTOR(15 downto 0);

out port : out STD LOGIC VECTOR(15 downto 0);

debug console : in STD LOGIC;

board clock: in std logic;

vga_red : out std logic vector( 3 downto 0 );
vga green : out std logic vector( 3 downto 0 );

vga blue : out std logic vector( 3 downto 0 );

h sync signal : out std logic;

v_sync_signal : out std logic

## TESTBENCH IO

pc_ex out : out STD LOGIC VECTOR (15 downto 0);
pc_mem out : out STD LOGIC VECTOR (15 downto 0);

instr MEM out : out STD LOGIC VECTOR (15 downto 0);
instr EX out : out STD LOGIC VECTOR(15 downto 0);

pc IFID out : out STD LOGIC VECTOR(15 downto 0);
pc IDEX out : out STD LOGIC VECTOR (15 downto 0);
pc EXMEM out : out STD LOGIC VECTOR(15 downto 0);
pc MEMWB out : out STD LOGIC VECTOR(15 downto 0);

instr IFID out : out STD LOGIC VECTOR (15 downto 0);
instr IDEX out : out STD LOGIC VECTOR (15 downto 0);

’

instr EXMEM out : out STD LOGIC VECTOR(15 downto O
instr MEMWB out : out STD LOGIC VECTOR (15 downto 0

)
)

’

n flag : out std logic;




z flag : out std logic;

opcode : out STD LOGIC VECTOR(6 downto 0);

inl : out STD LOGIC VECTOR(15 downto 0);
in2 : out STDiLOGIC7VECTOR(15 downto 0);

alu mode : out STD LOGIC VECTOR (2 downto
rdiidxl,rdiidx2 . out STDiLOGIC7VECTOR(2
branched,stall : out STD LOGIC;

wb_en : out STD LOGIC;

wb data : out STD LOGIC VECTOR (15 downto 0);
wb idx : out STD LOGIC VECTOR (2 downto 0);

rO0,rl,r2,r3,r4,r5,r6,r7: out STD LOGIC VECTOR(15 downto 0);

pending wb debug : out STD LOGIC VECTOR (7 downto 0)

end hpu;

architecture brent of hpu

-— ## INSTRUCTION DECODER and IDIF LATCHES INTERMEDIARY SIGNALS ##
signal instr ID : STD_LOGIC VECTOR (15 downto 0);
signal opcode ID : STD _LOGIC VECTOR (6 downto 0);
signal alu mode ID : STD LOGIC VECTOR(Z2 downto 0);
signal out flag ID : STD LOGIC := '0';
signal PC_ID : STD_LOGIC VECTOR(15 downto 0);

wb en ID : STD LOGIC := '0";
wb_idx ID : STD_LOGIC VECTOR(2 downto 0);

rd idx1l ID : STD LOGIC VECTOR (2 downto 0);
rd idx2 ID : STD LOGIC VECTOR(2 downto 0);

imm val ID : STD LOGIC VECTOR (15 downto 0);




signal imm en ID : STD LOGIC : ‘o',

signal mem wr en ID : STD LOGIC := '0';
signal mem rd en ID : STD LOGIC := '0';

signal inl ID,in2 ID : STD LOGIC VECTOR(15 downto 0);
signal rd datal ID, rd dataz ID : STD LOGIC VECTOR (15 downto 0);
signal mask ID : STD LOGIC VECTOR (15 downto 0) := x"FFFF";

BRANCH and EXMEM LATCHES INTERMEDIARY SIGNALS ##
rst ex EX,rst 1d EX : STD LOGIC := '0';

instr IDEX : STD LOGIC VECTOR(15 downto 0);
PC IDEX : STD LOGIC VECTOR(15 downto 0);
PC_EX : STD LOGIC VECTOR (15 downto 0);
opcode EX : STD LOGIC VECTOR (6 downto 0);
alu mode EX : STD LOGIC VECTOR(Z downto 0);
out flag EX : STD LOGIC := '0';

branched EX,stall EX : STD LOGIC := '0';
PC_wb EX : STD LOGIC VECTOR(15 downto 0);
mem wr en EX : STD LOGIC

mem rd en EX : STD LOGIC

wb en EX : STD LOGIC := '0';
wb idx EX : STD LOGIC VECTOR(2 downto 0);

inl EX, in2 EX : STD LOGIC VECTOR(15 downto 0);

alu result EX : STD LOGIC VECTOR(15 downto 0);
result_EX : STDiLOGIC7VECTOR(l5 downto 0);

z flag EX, n flag EX: STD LOGIC := '0';

-- ## MEMORY and MEMWB LATCHES INTERMEDIARY SIGNALS ##
signal PC MEM : STD LOGIC VECTOR(15 downto 0);

signal PC_EXMEM : STD LOGIC VECTOR(15 downto 0);




signal instr EXMEM : STD LOGIC VECTOR(15 downto 0);

signal PC_MEMWB : STD_LOGIC_VECTOR(15 downto 0);
signal instr MEMWB : STD LOGIC VECTOR(15 downto 0);

signal instr select MEM : STD LOGIC := '0';
signal instr addr MEM : STD LOGIC VECTOR(15 downto 0);
signal instr MEM : STD LOGIC VECTOR(15 downto 0);

signal mem wr en MEM : STD LOGIC := '0';
signal mem rd en MEM : STD LOGIC := '0';
signal mem wr en MEM OxOvec : STD LOGIC VECTOR (0 downto 0);

signal din MEM,dout MEM : STD LOGIC VECTOR(15 downto 0);
signal result MEM : STD LOGIC VECTOR (15 downto 0);

signal rom dout MEM : STD LOGIC VECTOR(15 downto 0);
signal ram dout MEM : STD LOGIC VECTOR(15 downto 0);

signal wb_en MEM : STD LOGIC := '0';
signal wb_idx MEM : STD LOGIC VECTOR (2 downto 0);
signal wb_data MEM : STD LOGIC VECTOR(15 downto 0);

signal wb_en WB : STD LOGIC := '0';
signal wb_idx WB : STD LOGIC VECTOR(2 downto 0);
signal wb _data WB : STD LOGIC VECTOR (15 downto 0);

-— ## LATCHES & RST##
signal IFID en FC: STD LOGIC := '1';
signal IFID rst FC : STD LOGIC := '0';

signal IDEX en FC: STD LOGIC := '1';
signal IDEX rst FC : STD LOGIC := '0';

signal EXMEM en FC: STD LOGIC
signal EXMEM rst FC: STD LOGIC

signal MEMWB en FC: STD LOGIC




signal MEMWB rst FC: STD LOGIC

signal rg rst FC : STD LOGIC
signal alu rst FC : STD LOGIC

signal out port FC : STD LOGIC VECTOR(15 downto 0);
signal rO i,rl i,r2 i,r3 i,r4 i,r5 i,r6 i,r7 1i

STD LOGIC VECTOR(15 downto 0);
signal pending wb : STD LOGIC VECTOR (7 downto 0);

component console is

port (

Stage 1 Fetch

sl pc : in STD LOGIC VECTOR ( 15 downto 0 );
sl inst : in STD LOGIC VECTOR ( 15 downto 0 );

Stage 2 Decode

$2 pc : 1in STD _LOGIC VECTOR ( 15 downto 0 );
s2 inst : in STD LOGIC VECTOR ( 15 downto 0 );

S2 reg a : | STD LOGIC VECTOR( 2 downto 0 );
s2 reg b : 1 STD LOGIC VECTOR( 2 downto 0 );
s2 reg c : in STD LOGIC VECTOR( 2 downto 0 );

s2 reg a data : in STD LOGIC VECTOR( 15 downto
s2 reg b data : in STD LOGIC VECTOR( 15 downto
s2 reg c data : in STD LOGIC VECTOR( 15 downto

s2 immediate : in STD LOGIC VECTOR( 15 downto 0 );

Stage 3 Execute

s3 pc : in STD LOGIC VECTOR ( 15 downto 0 );




s3 inst : in STD LOGIC VECTOR ( 15 downto 0 );

s3_reg a : in STD _LOGIC_VECTOR( 2 downto 0 );
s3 reg b : i STD LOGIC VECTOR( 2 downto 0 );
s3 reg ¢ : in STD LOGIC VECTOR( 2 downto 0 );

s3 reg a data : in STD LOGIC VECTOR( 15 downto
s3 reg b data : in STD LOGIC VECTOR( 15 downto
s3 reg c data : in STD LOGIC VECTOR( 15 downto

s3_immediate : in STD LOGIC VECTOR( 15 downto 0 );

-- Branch and memory operation
s3 r wb : in STD LOGIC;
s3 r wb data : in STD LOGIC VECTOR( 15 downto 0 );

s3 br wb : in STD LOGIC;
s3 br wb address : in STD LOGIC VECTOR( 15 downto 0 );

s3 mr wr : in STD LOGIC;
s3 mr wr address : in STD LOGIC VECTOR( 15 downto 0 );
s3 mr wr data : in STD LOGIC VECTOR( 15 downto 0 );

s3 mr rd : in STD LOGIC;
s3 mr rd address : in STD LOGIC VECTOR( 15 downto 0 );

-- Stage 4 Memory

s4 pc : in STD LOGIC VECTOR( 15 downto 0 );

s4 inst : in STD LOGIC VECTOR( 15 downto 0 );

s4 reg a : in STD LOGIC VECTOR( 2 downto 0 );

s4 r wb : in STD LOGIC;
s4 r wb data : in STD LOGIC VECTOR( 15 downto 0 );

-- CPU registers




register 0 : in STD LOGIC VECTOR downto
register 1 : in STD LOGIC VECTOR downto
register 2 : 1 STD LOGIC VECTOR downto
register 3 : in STD LOGIC VECTOR downto
register 4 : in STD LOGIC VECTOR downto
register 5 : in STD LOGIC VECTOR downto
register 6 : I STD_LOGIC VECTOR downto
register 7 : in STD LOGIC VECTOR downto

O O O O o o o o

-- CPU registers overflow flags
register 0 of : in STD LOGIC;
register 1 of : in STD LOGIC;
register 2 of : in STD LOGIC;
register 3 of : in STD LOGIC;
register 4 of : in STD LOGIC;
register 5 of : in STD LOGIC;
register 6 of : in STD LOGIC;
register 7 of : in STD LOGIC;

-- CPU Flags

zero_flag : in STD LOGIC;
negative flag : in STD LOGIC;
overflow flag : in STD LOGIC;

-- Debug screen enable

debug : in STD LOGIC;

console display memory access signals ( clk is the processor

addr write : in STD LOGIC VECTOR (15 downto 0);
clk : in STD LOGIC;
data in : in STD LOGIC VECTOR (15 downto 0);

en write : in STD LOGIC;




-— Video related signals
board clock : in STD LOGIC;
v_sync_signal : out STD LOGIC;
h sync signal : out STD LOGIC;
vga _red : out STD LOGIC VECTOR( 3 downto 0 );
vga_green : out STD LOGIC VECTOR( 3 downto 0 );
vga_blue : out STD LOGIC VECTOR( 3 downto 0 )

begin

mem wr_ en MEM OxOvec <= (0O=>mem wr en MEM);

IFID latch : entity work.IFID latches
port map (
clk => global clk, en => IFID en FC, rst => IFID rst FC,
PC_in=>PC MEMN,
PC_out=>PC_ID,

instr in=>instr MEM,

instr out=>instr ID

) ;

decoder : entity work.instr decoder
port map (
instr instr ID,

stall stall EX,

opcode opcode 1ID,

alu mode alu mode 1ID,

out flag out flag ID,

wb_ en wb en ID,

wb idx wb idx ID,

rd idxl1 rd idxl ID,
rd idx2 rd idx2 ID,




imm val imm val ID,

imm en imm en ID,

mem wr en mem wr en ID,

mem rd en mem rd en ID,

mask => mask ID,

in port => in port

registerfile : entity work.register file
port map (
rst=> rg rst FC, clk=>global clk,

rd indexl=> rd idxl ID, rd index2 => rd idx2 ID,
rd datal=> rd datal ID, rd data2 => rd data2 ID,

wr_ index => wb idx WB,

wr data => wb_data WB,

wr_en => wb _en WB,

r0 => r0 i, rl =>rl i, r2 => r2 i, r3 => r3 i, rd =>

r6 => r6 i, r7 => r7 1

imm MUX : entity work.mux
port map (
en => imm en ID,
in0 => rd dataz 1ID,
inl => imm val ID,
output => in2 ID
)

andleébit : entity work.and gate
port map (
inl => mask ID,
in2 => rd datal ID,
output => inl ID
) i

IDEX latch : entity work.IDEX LATCHES




port map (
clk=>global clk, en=> IDEX en FC, rst => IDEX rst FC,

pc_in => PC ID, pc out => pc IDEX,

instr in => instr ID, instr out => instr IDEX,

opcode in => opcode ID, opcode out => opcode EX,

out flag in => out flag ID, out flag out => out flag EX,

mem_wr_en_in => mem wr en 1D, mem_rd_en_in => mem_rd_en_ID,

mem wr en out => mem wr en EX, mem_rd_en_out =>

mem rd en EX,

wb en in =>wb _en ID, wb idx in => wb_ idx ID,

wb en out => wb _en EX, wb idx out => wb idx EX,

alu mode in => alu mode ID,

alu mode out => alu mode EX,

inl in => inl ID, in2 in => in2 ID,
inl out => inl EX, in2 out => in2 EX
) ;

branch : entity work.branch logic
port map (

rst ex => rst ex,rst 1d => rst 1d,

stall=>stall EX,

PC_in => PC_MEM,

PC_EX => PC_IDEX,

opcode in => opcode EX,

inl in => inl EX, in2 in => in2 EX,

z flag in => z flag EX, n flag in =>

PC out => PC_EX,
wb _out => PC wb EX,

branched out => branched EX

alu : entity work.alu
port map (
inl => inl EX, in2 => in2 EX,




alu mode => alu mode EX, rst=> alu rst FC,

result => alu result EX,
z flag => z flag EX, n flag => n flag EX
)

result MUX : entity work.mux
port map (
en => branched EX,
in0 => alu result EX,
inl => PC_wb EX,
output => result EX

EXMEM latch : entity work.EXMEM latches
port map (
clk => global clk, en => EXMEM en FC, rst => EXMEM rst FC,

PC_in => PC_EX, PC_out => PC_MEM,

PC tb in => PC_IDEX, PC_tb out => PC_EXMEM,

instr in => instr IDEX, instr out => instr EXMEM,

mem_wr_en_in => mem wr en EX, mem_rd_en_in => mem_rd_en_EX,

mem wr en out => mem wr en MEM, mem_rd_en_out =>

mem rd en MEM,

wb en in =>wb _en EX, wb idx in => wb idx EX,

wb _en out => wb en MEM, wb idx out => wb_ idx MEM,

din in => in2 EX, din out => din MEM,

result in => result EX, result out => result MEM

mem sel : entity work.mem sel
port map (
pc => PC_MEM,
addr => instr addr MEM,

mem select => instr select MEM

) ;




entity work.dummy ram
port map (
clk => global clk,

addra => result MEM,
ena => mem rd en MEM,
douta => dout MEM,

addrb => instr addr MEM,
enb => '1",

doutb => ram dout MEM,

wea => mem wr_ en MEM,

dina => din MEM

entity work.dummy rom
port map (
clk => global clk,

addr => instr addr MEM,
en => '1"'",
dout => rom dout MEM

) ;

instr MUX : entity work.mux

port map (
en => instr select MEM,
in0 => rom dout MEM,
inl => ram dout MEM,
output => instr MEM

)

wb MUX : entity work.mux
port map (
en => mem rd en MEM,
in0 => result MEM,
inl => dout MEM,
output => wb data MEM




MEMWB latch entity work.MEMWB latches
port map (

clk => global clk, en => MEMWB en FC, rst => MEMWB rst FC,

PC_in => PC_EXMEM, PC out => PC_MEMWB,
instr in => instr EXMEM, instr out => instr MEMWB,

wb en in =>wb en MEM, wb_en out => wb en WB,
wb idx in => wb idx MEM, wb idx out => wb idx WB,

wb data in => wb data MEM, wb data out => wb data WB

controller entity work.controller
port map (

rst ex => rst ex,rst 1ld => rst 1d,

clk global clk,
PC PC_MEM,

stall stall EX,

wb en ID
wb en EX
wb _en WB
wb idx ID
wb idx EX
wb idx WB

rd idxl ID =>
rd idx2 ID =>

inl

out flag

branched

out port

IFID en

wb en ID,
wb en EX,
wb_en WB,
wb idx ID,
wb idx EX,
wb idx WB,

rd idxl ID,
rd idx2 ID,

inl EX,

out flag EX,

branched EX,

out port FC,

IFID en FC,




IDEX en IDEX en FC,
EXMEM en EXMEM en FC,
MEMWB en MEMWB en FC,

rg rst rg rst FC,

alu rst alu rst FC,

IFID rst IFID rst FC,
IDEX rst IDEX rst FC,
EXMEM rst EXMEM rst FC,
MEMWB rst MEMWB rst_ FC,

pending wb debug => pending wb

console display : console

port map (

-— Stage 1 Fetch

sl pc => PC MEM,
sl inst => instr MEM,

-- Stage 2 Decode

S2_pc PC ID,

s2_inst instr ID,

s2 reg a => wb idx ID,
s2 reg b => rd idxl ID,
s2 reg ¢ => rd idx2 ID,

s2 reg a data => (others => '0'),
s2 reg b data => rd datal ID,
s2 reg c data => rd dataz ID,

s2 immediate => imm val ID,

-- Stage 3 Execute




s3_pc => PC_IDEX,

s3 inst => instr IDEX,

s3 _reg a => alu mode EX,
s3 reg b => (others => '0"),

s3 reg c => (others => '0"),

s3 reg a data => (others
s3 reg b data => inl EX,
s3 reg c data => in2 EX,

s3 immediate => (others

s3 r wb => wb_en EX,

s3 r wb data => result EX,

s3 _br wb => branched EX,
s3 _br wb address PC wb EX,

S3 mr wr mem wr en EX,
s3 mr wr address result EX,

s3 mr wr data in2 EX,

s3 mr rd mem rd en EX,

s3 mr_ rd address result EX,

-- Stage 4 Memory

sd pc => PC_ EXMEM,
s4 inst => instr EXMEM,

s4 reg a => wb_ idx MEM,
s4 r wb => wb_en MEM,
s4 r wb data => wb data MEM,

-- CPU registers

register 0 => r0 i,

register 1 => rl i,




register 2 => r2 i,
register 3 => r3 i,
register 4 => r4 1,
register 5 => r5 i,
register 6 => r6 i,

register 7 => r7 1,

register 0 of '0"
register 1 of 0!
register 2 of 'O
register 3 of 0!
register 4 of '0!
register 5 of '0"
register 6 of 0"

register 7 of '0!

-- CPU Flags
zero flag =>
negative flag =>

overflow flag =>

-— Debug screen enable

debug => debug console,

-—- Text console display memory access signals ( clk is the

processor clock )

clk => global clk,
addr write => x"0000",
data in => x"0000",

en write => '0',

-— Video related signals




board clock => board clock,

h sync _signal => h sync_signal,
v_sync_signal => v_sync_signal,
vga red => vga red,

vga green => vga green,

vga _blue => vga blue

out port <= out port FC;

-——— TESTBENCH IO
-—instr MEM out <= instr MEM;

-—instr IFID out <= instr ID;
-—instr IDEX out <= instr IDEX;
-—instr EXMEM out <= instr EXMEM;
-—instr MEMWB out <= instr MEMWB;

--pc_MEM out <= PC MEM;
--pc_EX out <= PC EX;
-—-pc_IFID out <= PC ID;
--pc_IDEX out <= PC IDEX;
--pc_EXMEM out <= PC EXMEM;
--pc_MEMWB out <= PC MEMWB;

--n_flag <= n_flag EX;
--z flag <= z flag EX;

-—-opcode <= opcode EX;

--rd idxl <= rd idxl ID;
--rd idx2 <= rd idx2 ID;

--stall <= stall EX;

-———- ALU Inputs
--inl <= inl EX;

--in2 <= in2 EX;




-—alu mode <= alu mode EX;

--branched <= branched EX;

-—-—-—- Write-Back Stage Outputs
--wb_en <= wb_en WB;
--wb_data <= wb_data WB;

--wb idx <= wb idx WB;

r0 i;
rl i;
rz2 ij;
r3 i;
rd i;
r5 1i;
r6 i;

r7 1i;

--pending wb debug <= pending wb;

end architecture brent; -- NOOOOOOOO

ibrary IEEE;
use IEEE.STDiLOGIC71164.ALL;

use IEEE.numeric std.all; -- use that, it's a better coding guideline

—— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity alu is
port (
inl,in2 : in STD LOGIC VECTOR(15 downto




alu mode : in STD LOGIC VECTOR(2 downto O0);

rst : in STD LOGIC;

result : out STD LOGIC VECTOR (15 downto 0);
z flag : out STD LOGIC;

n flag : out STD LOGIC

) ;

end alu;

architecture Behavioral of alu is

signal z flag i,n flag i : std logic := '0';

begin

process (inl,in2,alu mode, rst)

variable product: std logic vector (31 downto 0) := (others => '0");
variable temp: std logic vector(l5 downto 0) := (others => '0');

variable zeros: std logic vector (15 downto 0) := (others => '0");

begin

if (rst = '1l'") then
z flag i <= '0";
n flag i <= '0";

result <= zeros;

else
if (alu mode = "000") then
-— NO OP

temp := inl;

elsif (alu mode = "001") then
-— ADD
temp := STD LOGIC VECTOR(signed(inl) + signed(in2));

elsif (alu mode = "010") then
-—- SUB

temp := STD LOGIC VECTOR (signed(inl) - signed(in2));

elsif (alu mode = "011") then




-—-MULT
product := STD LOGIC VECTOR (signed(inl) * signed(in2));
temp := product (15 downto 0);

elsif (alu mode = "100") then
—-— NAND
temp := STD LOGIC VECTOR (signed(inl) NAND signed(in2));

elsif (alu mode = "101") then
-—-SHIFT LEFT

temp :=
STD LOGIC VECTOR(shift left (signed(inl),to integer (signed(in2))));

--UPDATE TO SHIFT BY AN INPUT VALUE

elsif (alu mode = "110") then
—-—SHIFT RIGHT
temp :=
STD LOGIC VECTOR (shift right(signed(inl),to_integer(signed(in2))));
--UPDATE TO SHIFT BY AN INPUT VALUE

elsif(alu mode = "111") then
-— TEST

temp := inl;

if (temp = zeros) then
z flag i <= '1";
else
z flag i <= '0"';

end 1if;

if (signed(temp) < 0) then
n flag i <= '1";

else
n flag i <= '0";

end if;
else
temp := zeros;

end if;

result <= temp;




end if;
n flag <= n _flag i;

z flag <= z flag i;

end process;

end Behavioral;

And.vhd

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

-- Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC STD.ALL;

-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity and gate 1is
Port (
-— INPUTS
inl : in STD LOGIC VECTOR(15 downto
in2 : in STD LOGIC VECTOR (15 downto

—-— OUTPUTS
output : out STD LOGIC VECTOR (15 downto
)
end and gate;
architecture Behavioral of and gate is

begin

output <= inl and in2;




end Behavioral;

Branch_logic.vhd

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

-— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity branch logic is
Port (
rst ex,rst 1d,stall : in STD LOGIC;

PC in,PC EX,inl in,in2 in : in STD LOGIC VECTOR(15 downto 0);
opcode_in : in STD LOGIC VECTOR (6 downto 0);

n flag in,z flag in : in STD LOGIC;
PC out,wb out : out STD LOGIC VECTOR(15 downto 0);
branched out : out STD LOGIC
) i
end branch logic;

architecture Behavioral of branch logic is

signal PC : std logic vector(l5 downto 0) := (others
signal branched : std logic := '0';

signal prev_stall : std logic := '0';

begin




process (PC_in,PC EX,inl in,in2 in,opcode in,n flag in,z flag in,rst 1d,

rst_ex,stall)

begin

if rst ex = 'l' then
PC <= x"0000";

branched <= '1"';

elsif rst 1d = '1' then
PC <= x"0002";

branched <= '1"';

elsif stall = '1l' then

PC <= PC_in;
branched <= '0"';

else

case to _integer (unsigned(opcode in)) is

when 64 =>
--— BRR

PC <= std logic vector(signed(PC_EX) +
shift left(resize(signed(in2 in(14 downto 0)), 16), 1));
branched <= '1"';

when 65 =>

-— BRR.N

if n flag in = '"1' then
PC <= std logic vector(signed(PC_EX) +

shift left(resize(signed(in2 in(14 downto 0)), 16), 1));

branched <= '1"';

else
PC <= STD LOGIC VECTOR (signed(PC_in) + 2);
branched <= '0';

end 1if;

when 66 =>
-— BRR.Z




if z flag in = 'l' then
PC <= std logic vector(signed(PC_EX) +
shift left (resize(signed(in2 in (14 downto 0)), 16), 1));
branched <= '1";
else
PC <= STD LOGIC VECTOR(signed(PC_in) + 2);
branched <= '0';

end if;

when 67 =>
-- BR
PC <= STD LOGIC VECTOR(signed(inl in) +
shift left(resize(signed(in2 in(14 downto 0)), 16), 1));
branched <= '1';

when 68 =>
--— BR.N

if n flag in = '"1' then

PC <= STD LOGIC VECTOR(signed(inl in) +
shift left(resize(signed(in2 in(l4 downto 0)), 16), 1));
branched <= '1"';
else
PC <= STD LOGIC VECTOR(signed(PC in) + 2);
branched <= '0';
if;
when 69 =>
-—- BR.Z
if z flag in = 'l' then
PC <= STD LOGIC VECTOR(signed(inl in) +
shift left(resize(signed(in2 in (14 downto 0)), 16), 1));
branched <= '1'";
else
PC <= STD LOGIC VECTOR(signed(PC _in) + 2);
branched <= '0';

end if;

when 70 =>
-— BR.SUB (WB needs to be enabled from controller)
PC <= STD LOGIC VECTOR(signed(inl in) +
shift left(resize(signed(in2_ in (14 downto 0)), 16), 1));

branched <= '1"';

when 71 =>




—-— RETURN
PC <= STD LOGIC VECTOR(signed(inl in));

branched <= '1"';

when others =>
-— NO BRANCH OP
PC <= STD LOGIC VECTOR(signed(PC_in) + 2);
branched <= '0';
end case;
end 1if;

end process;
PC out <= PC;
branched out <= branched;

wb out <= STD LOGIC VECTOR (signed(PC_EX) + 2);

end Behavioral;

Controller.vhd

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity controller is
port (
-- ## INPUTS
-- ## GLOBAL
clk,rst 1d,rst ex : in std logic;
PC : in std logic vector (15 downto




-— ## REGISTER MONITORING

wb en ID,wb en EX,wb en WB : in std logic;

wb idx ID,wb idx EX,wb idx WB : in std logic vector (2
downto 0);

rd idxl ID,rd idx2 ID : in std logic vector (2 downto 0);

-— #4# OUT_ PORT MONITORING
inl : in std logic vector (15 downto 0);

out flag : in std logic;

-— ## BRANCH MONITORING

branched : in std logic;

-— ## OUTPUTS
-- ## CPU OUT_PORT
out port : out std logic vector(l5 downto 0);

-— ## ENABLES
IFID en,IDEX en,EXMEM en,MEMWB en,stall : out std logic;

-—- ## RESETS

rg rst,alu rst : out std logic;
IFID rst,IDEX rst,EXMEM rst,MEMWB rst : out std logic;

-- ## DEBUGGING
pending wb debug : out std logic vector (7 downto O0)

) ;
end controller;
architecture Behavioral of controller is
signal out port i : std logic vector (15 downto 0)
IFID en i : std logic := '1";
IDEX en i1 : std logic := 'l"';
EXMEM en i : std logic := '1";

MEMWB en i : std logic := '1';

IFID rst i : std logic : o'y




IDEX rst i : std logic := '0';

EXMEM rst i : std logic := '0';
MEMWB rst i : std logic := '0'";
rg rst i : std logic := '0';

alu rst 1 : std logic := '0';

stall i : std logic := '0'";

pending wb : std logic vector (7 downto 0) := (others =

process (clk) begin

if out flag = '1'
out port i <=

end 1if;

1if not rising edge(clk) then

stall 1 <= '0"';
IFID en 1 <= '1"';
IDEX en 1 <= '1";

IFID rst i <= '0"';
IDEX rst 1 <= '0';

-—- CLEAR BUSY FLAG ON INCOMING WB
if wb en WB = 'l' then
pending wb(to integer (unsigned(wb idx WB))) <

end 1if;

-— SET PENDING IF INSTR MADE IT TO EX
if wb en EX = 'l' then
pending wb(to integer (unsigned(wb_ idx EX))) <= '1';

if wb _idx EX = rd idxl ID or wb idx EX = rd idx2 ID then

stall 1 <= "'1";
IFID en i <= '0";
IDEX rst i <= '1";




if branched = '1l' then
IFID rst i <= '1"';
IDEX rst 1 <= '1";

elsif pending wb(to integer (unsigned(rd idxl ID)))

pending wb(to integer (unsigned(rd idx2 ID)))

stall 1 <= '1";
IFID en i <= '0'";
IDEX rst i <= '1"';

end 1if;
end 1f;

end process;

out port <= out port i;

stall <= stall i;

IFID en IFID en 1i;
IDEX en IDEX en 1i;
EXMEM en EXMEM en 1i;
MEMWB en MEMWB en 1i;

IFID rst IFID rst i;
IDEX rst IDEX rst i;
EXMEM rst EXMEM rst 1i;
MEMWB rst MEMWB rst i;

rg rst rg rst i;

alu rst alu rst i;

pending wb debug <= pending wb;

end Behavioral;

'1'

= 11"
then

or




Dummy_ram.vhd

library IEEE;
use IEEE.STDiLOGIC71164.ALL;

use IEEE.numeric std.all; -- use that, it's a better coding guideline

—-— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity dummy ram is
port (
clk : in std logic;

addra,addrb : in std logic vector (15 downto 0);

ena, enb, wea : in std logic;

dina : in std logic vector (15 downto 0);

douta : out std logic vector (15 downto 0);
doutb : out std logic vector(l5 downto O0)
) ;

end entity dummy ram;

architecture dummy ram of dummy ram is

-- Memory array for storing up to 256 words (16-bit each).

-— Here we explicitly set the first 8 locations to some dummy

type mem array is array (0 to 1023) of std logic vector(l5 downto




signal mem : mem array := (others => (others => '0"));

-- Single clocked process handling both Port A (read/write) and
Port B (read)

process (clk)
begin
if not rising edge(clk) then

if wea = '"1' then
mem (to_integer (unsigned(addra (7 downto 0)))) <= dina;

end 1f;

if ena = '1' then

douta <= mem(to integer (unsigned(addra (7 downto 0))));
else

douta <= (others => '0"');

end 1if;

if enb = '1' then

doutb <= mem(to integer (unsigned(addrb (7 downto 0))));
else

doutb <= (others => '0"');

end 1if;

end 1f;

end process;

end architecture dummy ram;

Dummy_rom.vhd

library IEEE;
use IEEE.STD LOGIC 1164.ALL;




-— Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity dummy rom is
(en : in STD LOGIC;
addr : in STD LOGIC VECTOR (15 downto 0);
dout : out STD LOGIC VECTOR (15 downto 0);
clk : in STD LOGIC);

end dummy rom;

architecture Behavioral of dummy rom is

type mem array is array (0 to 1023) of std logic vector(l5 downto 0);

signal mem : mem array := (

0000 => "1000000000000100", -- 1000000 000000100
8

0008 "l1000000000000100™, -- 1000000 000000100
16

0010 "oooooo01000010100™, -- 1000000 0OOOOOO100
16

0016 "1000011000000100", -- 1000011 000 000100
8

0008 "oooooo01000001010™, --
0010 "0000011010010000", --
0012 '"ooooo1o0001011101™, --
0014 "ooool1i1io001000000™, --

-= 0088 => "0010010100000000", -- - 2500 ResetLoad:
loadimm.upper 0x00
- 0090 => "0010010010000000", -- - 2480
loadimm.lower 0x80
-= 0092 => "0010011110111000", -- - 27B8

ro,r’7




0094 "0100001010000000",

0096 "ooool1o00010010110™,

r2,r2,r6

0098 "0000100010010010",

r2,r2,r2

0100 "ooool11o010000000™,

r2

0102 "1000010111111100™,

WaitFor AA

0104 => "0010010111111111",

loadimm.upper OxXFF

- 0106 => "0010010000000000",

loadimm.lower 0x00

0000 => "1000000000000100",
ResetExecute

0002 => "1000000000101011",
ResetLoad

0004 => "1000000000000001",
Interrupt

0006 => "1000000000000000",
WaitForever

0008 => "0010010100000100",
loadimm.upper BootVector.hi

0010 => "0010010000000000",

"0010000111111000™,

"00000000000000C0Q™,
"000000000000000CQ™,
"0010010000000000™,
loadimm.lower 0x00
0020 => "0010011010111000",
r2,xr’7
0022 => "0010010100100101",
loadimm.upper 0x25
0024 => "0010010000000000",
loadimm. lower 0x00
0026 => "0000010010010111",
r2,r2,r7

4280 WaitFor AA:

0896

0892

0E8O0

85FC

25FF

2400

WaitForever:

ResetExecute:




0028 => "0000111010000000",

"1000010000000010",
ResetExecute 1
0032 => "1000000111110011",
WaitForever
0034 => "0010010100000100",
loadimm.upper BootVector 1.hi
0036 => "0010010000000010",

"0010000111111000™,

"00000000000000C0Q™,
"000000000000000CQ™,
"0010010000000000",
loadimm.lower 0x00
0046 => "0010011010111000",
r2,xr’7
0048 => "0010010100100100",
loadimm.upper 0x24
0050 => "0010010000000000",

"0000010010010111™,

"0000111010000000",

"1000010000000010™,
ResetExecute 2
"1000000111100110™,
WaitForever
0060 => "0010010100000100",
loadimm.upper BootVector 2.hi
0062 => "0010010000000100",
loadimm.lower BootVector 2.1o

0064 => "0010000010111000",

"0000000000000000™,
"0000000000000000",
"0010010110000111",
loadimm.upper 0x87
0072 => "0010010011000000",

loadimm.lower 0xcO




"0000010010010111™,

"00001l11010000000™,

"1000010000000010™,
ResetExecute 3
"1000000111011011™,
WaitForever
0082 => "0010010100000100",
loadimm.upper BootVector.hi
0084 => "0010010000000000",
loadimm.lower BootVector.lo
0086 => "1000011111000000",
r7,0
0088 => "0010010100000000",
loadimm.upper 0x00
0090 => "0010010010000000",
loadimm. lower 0x80

0092 => "0010011110111000",
"0100001010000000",
"0000100010010110",
"0000100010010010",
"0000111010000000™,
"1000010111111100",

WaitFor AA

0104 => "0010010111111111"™,

loadimm.upper OxFF

0106 => "0010010000000000",

loadimm.lower 0x00
"0100001010000000™,
"0000100010010111",

"0000100010010010",

=> "0010010110101010",
LOADIMM.UPPER OxAA

ResetlLoad:

WaitFor AA:




"0000010010010111™,

"00001l11010000000™,

"1000010000000010™,
Got AA
"1000000111110010™,
WaitFor AA
0124 => "0010010000000001",
loadimm.lower 0x01
0126 => "0000000000000000",
0128 "000000000000000QQ™,
0130 "00000000000000C0Q™,
0132 "0100000111000000™,

0134 "0100001010000000",

"0000100010010110™,

"0000100010010010",

"00001l11010000000™,

"1000010000000010",

Done AA
"1000000111111011"™,

WaitForEnd AA
0146 => "0010010000000000",

loadimm.lower 0x00
0148 => "0000000000000000",
0150 => "0000000000000000",
0152 => "0000000000000000",
0154 => "0100000111000000",

0156 => "0010010100000100",
loadimm.upper RamStart.hi

0158 => "0010010000000000",
loadimm.lower RamStart.lo

0160 => "0010011110111000",
r6,r’7

0162 => "0010010100000000",
loadimm.upper 0x00

Done AA:




0164 => "0010010000000010", -- 2402
loadimm.lower 0x02

0le6e => "0010001110111000", -- 23B8
store r6,r7

0168 => "0010010100000000", -- 2500
loadimm.upper 0x00

0170 => "0010010010000000", -- 2480
loadimm.lower 0x80

0172 => "0010011110111000", -- 27B8

"0100001010000000"™, -- 4280 WaitFor 55:
"0000100010010110", -- 0896
"0000100010010010"™, -- 0892
"0000111010000000"™, -- 0E80
"1000010111111100"™, -—- 85FC
WaitFor 55
0184 => "0010010111111111"™, -- 25FF
loadimm.upper OxFF
0186 => "0010010000000000", -- 2400
loadimm. lower 0x00
0188 => "0100001010000000", -- 4280
=> "(0000100010010111", -- 0897
=> "0000100010010010", -- 0892
=> "0010010101010101"™, -- 2555
LOADIMM.UPPER 0x55
=> "00000100100101121", -- 0497
"0000111010000000"™, -- 0E80
"1000010000000010", -- 8402

Got 55
"1000000111110010"™, -- 81F2

"00l0010000000001™, -- 2401 Got 55:

loadimm.lower 0x01

0206 => "000000OCOOOOOOOOO", -- 0000




"000000000O0O0O0COOO", --
"000000000000COOO", --
"0l00000111000000™, --

"0100001010000000", --

"0oooo0100010010110"™, --

"0000100010010010", --

"00001l11010000000™, --

"1000010000000010™, --
Done 55
"1000000111111011"™, --
WaitForEnd 55
0226 => "0010010000000000", --
loadimm. lower 0x00
0228 "000000000000OOOQ™, --
0230 "000000000000COQOOCQ™, --
0232 "0000000000000C0O0CQ™, --
0234 "0100000111000000"™, --

0236 => "0010010100000000", --

loadimm.upper 0x00
0238 => "0010010010000000", --

loadimm.lower 0x80
0240 => "0010011110111000"™, --

"0l00001010000000™, -- WaitForSize:

"0010011100010000", --

"0oooo100010010110"™, --

"0000100010010010", --

"0000111010000000", --

"1000010111111021"™, -—-

WaitForSize

"0000110100001000", --




0256 => "0010010000000001",
loadimm.lower 0x01

0258 => "0000000000000000",

0260 "0000000000000C00Q™,

0262 "000000000000000Q™,

0264 "0100000111000000™,

0266 "0100001010000000",

"0000100010010110™,

"0000100010010010",

"0000111010000000™,

"1000010000000010™,
DoneSize

0276 => "1000000111111011",
WaitForSizeEnd

0278 => "0010010000000000",
loadimm.lower 0x00

0280 => "0000000000000000",

0282 => "0000000000000000",

0284 => "0000000000000000",

0286 => "0100000111000000",
r7

0288 => "0010010100000010",

loadimm.upper 0x02
0290 => "0010010000000000",

loadimm.lower 0x00
0292 => "0010011011111000",
r3,r7
0294 => "0010010111111111",
loadimm.upper LedDisplay.hi
0296 => "0010010011110010",
loadimm.lower LedDisplay.lo
0298 "000000000000000Q™,
0300 "00000000000000C0Q™,
1002 "000000000000000Q™,
0304 "00000000000000C0Q™,
0306 "000000000000000Q™,
"0010001111100000™,

r7,r4

DoneSize:

GetProgram:




"0000111100000000",

"1000010101100111™,

WaitForever

"0100001010000000",

"0010011001010000™,

"0000100010010110",

"0000100010010010™,

"0000111010000000",

"1000010111111011™,

WaitForHighByte

"0000110001001000",

"0000101001001000",

0330 => "0010010000000001",

loadimm.lower 0xO01

"0000000000000C0O0OO™,

"0000000000000C0O0OO™,

"0000000000000000",

"0l00000111000000™,

"0100001010000000",

"0000100010010110™,

"0000100010010010",

"0000111010000000™,

"1000010000000010",

DoneHighByte
"1000000111111011™,
WaitForHighByteEnd
0352 => "0010010000000000",

loadimm.lower 0x00
0354 => "0000000000000000",
0356 => "0000000000000000™,




"0000000000000C0O0OO™,
"0100000111000000",

"0010011000001000",

"0100001010000000",

"0010011001010000",

"0000100010010110™,

"0000100010010010",

"0000111010000000™,

"1000010111111011"™,

WaitForLowByte

"0000110001001000™,

0378 => "0010010000000001",

loadimm.lower 0x01

0380 => "00000000000000C0CO0",

0382
0384
0386

0388

"0000000000000C0O0OO™,

"0000000000000C0O0OO™,

"0100000111000000",

"0100001010000000",

"0000100010010110",

"0000100010010010",

"0000111010000000™,

"1000010000000010",

DoneLowByte
"1000000111111011",

WaitForLowByteEnd
0400 => "0100001010000000",

r2

0402 => "0010010000000000",

loadimm.lower 0x00

0404 => "0000000COCOOOOOOCOO™,

DonelLowByte:




"0000000000000C0O0OO™,

"0000000000000000O™",

"0l00000111000000™,

"0000001001001000",

"0000101010001001™,

"0000110010001111",

"0000111010000000™,

"1000010000010101",

GotInstruction

"0010011011001000",

0424 => "0010010100000000",

loadimm.upper StepSize.hi

0426 => "0010010000000010",
loadimm.lower StepSize.lo
0428 => "0010011010111000",
r2,xr’7
0430 => "0010010100000100",
loadimm.upper BootVector.hi
0432 => "0010010000000000",
loadimm.lower BootVector.lo
0434 => "0010011000111000",
r0,r7
0436 => "0010011111011000",
r7,r3
0438 => "0000110111001000",
r7,8
0440 => "0010010100100101",
loadimm.upper 0x25
"0010001000111000™,
rQ0, r7
"0000001000000010™,

"0010011111011000™,

"0010010100100100™,




"0010001000111000"™, --
r0,r7
"000o001000000010"™, --

=> "(0010010110000111", --

loadimm.upper 0x87

0456 => "0010010011000000", --
loadimm.lower 0xCO

0458 => "0010001000111000", --
store r0,r7

0460 => "1000000000000101", --
DecrementCount

0462 => "0010001011001000", -- GotInstruction:
store r3,rl

0464 => "0010010100000000", --
loadimm.upper StepSize.hi

0466 => "0010010000000010", --
loadimm.lower StepSize.lo

0468 => "0000001011011111", --
r3,r3,r7

0470 => "0010010100000000", --
loadimm.upper 0x00

0472 => "0010010000000001", --
loadimm.lower 0x01

0474 => "0000010100100111", --
rd,rd,r7

0476 => "1000000110100101", --
GetProgram

others => (others => '0")
) i

begin
process (clk)
begin
1f not rising edge(clk) then

if en = '1l' then

dout <= mem(to_ integer (unsigned(addr (7 downto 0))));

else
dout <= (others => '0");

end 1f;

end if;




end process;

end Behavioral;

EXMEM _latches.vhd

library IEEE;
use IEEE.std logic 1164.all;

use ieee.std logic unsigned.all;

entity EXMEM latches 1is
port (
—-— CONTROL SIGNALS

clk,en,rst : in std logic;

-— INPUTS
PC in : in std logic vector (15 downto 0);
PC tb in : in std logic vector (15 downto 0);

instr in : in std logic vector (15 downto 0);

mem wr en in : in std logic;

mem rd en in : in std logic;

wb en in : in std logic;

wb idx in : in std logic vector (2 downto 0);

din in : in std logic vector (15 downto O0);

result in : in std logic vector (15 downto 0);

-— OUTPUTS
PC out : out std logic vector(l5 downto 0);
PC tb out : out std logic vector(l5 downto 0);

instr out : out std logic vector(l5 downto 0);

mem wr_en out : out std logic;

mem rd en out : out std logic;

wb_en out : out std logic;

wb idx out : out std logic vector (2 downto 0);




din out : out std logic vector (15 downto 0);

result out : out std logic vector (15 downto 0)

) ;
end EXMEM latches;

architecture Behavioral of EXMEM latches 1is

signal PC : std logic vector(l5 downto 0) := x"0000";

PC tb : std logic vector(l5 downto 0) := x"FFFF";
instr : std logic vector(l5 downto 0) := x"0000";

mem wr en : std logic := '0';

mem rd en : std logic := '0';

wb en : std logic := '0';

wb idx : std logic vector (2 downto 0);
din : std logic vector (15 downto 0);
result : std logic vector (15 downto 0);

process (clk)
begin
1f rising edge(clk) then
if (rst = '1l'") then
PC <= x"0000";
PC TB <= x"FFFEF";
instr <= (others => '0");
mem wr en <= '0';
mem rd en <= '0';
wb en <= '0'";
wb idx <= (others
din <= (others =>

result <= (others =

elsif (en = '"1l'") then
PC <= PC _in;
PC TB <= PC_tb in;
instr <= instr in;

mem wr en <= memﬁwrieniin;




mem rd en <= mem rd en in;
wb en <= wb_en in;

wb idx <= wb idx in;

din <= din_in;

result <= result in;

end if;
end if;

end process;

PC out <= PC;

PC tb out <= PC tb;

instr out <= instr;

mem Wr en out <= mem wr_en;
mem rd en out <= mem rd en;
wb en out <= wb en;

wb idx out <= wb idx;

din out <= din;

result out <= result;

IDEX_latches.vhd

library IEEE;
use IEEE.std logic 1164.all;

--use leee.std logic unsigned.all;

entity IDEX latches 1is
port (
—-— CONTROL SIGNALS

clk,en,rst : in std logic;

-— INPUTS
pc_in : in std logic vector (15 downto 0);
instr in : in std logic vector (15 downto 0);

opcode in : in std logic vector (6 downto 0);




out flag in : 1
inl in,in2 in
mem wr_ en in
mem rd en in

wb en in : in s
wb idx in : in
alu mode in : 1
-— OUTPUTS
pc_out : out st
instr out : out
opcode_out : ou
out flag out
inl out,in2 out
mem wr en out

mem rd en out

wb en out : out

wb idx out : ou

n std logic;
in std logic vector (15 downto 0);
in std logic;
in std logic;
td logic;
std logic vector (2 downto 0);

n std logic vector (2 downto 0);

d logic vector (15 downto 0);

std logic vector (15 downto 0);
t std logic vector (6 downto 0);
out std logic;

out std logic vector (15 downto 0);

out std logic;
out std logic;

std logic;
t std logic vector (2 downto 0);

alu mode out : out std logic vector (2 downto 0)
) ;
end IDEX latches;

architecture Behavioral of IDEX latches 1is

instr : STD LOGIC VECTOR (15 downto 0) := (others '0');
PC : STDiLOGIC7VECTOR(l5 downto 0) := x"FFFF";

opcode : std logic vector (6 downto 0);
out flag : std logic := '0';

inl, in2 : std logic vector (15 downto 0);
mem wr en : std logic := '0'";

mem rd en : std logic : '0';

wb en : std logic




signal wb_idx : std logic vector (2 downto 0);

signal alu mode : std logic vector (2 downto 0);

begin

process (clk)
begin
if rising edge(clk) then
if (rst = '1l'") then
opcode <= (others '0");

out flag <= '0';

instr <= (others => '0"');

pc <= x"FFFE";

inl <= (others => '0");

in2 <= (others => '0");

mem wr _en <= '0';

mem rd en <= '0';

wb en <= '0'";

wb idx <= (others

alu mode <= (others
elsif en = 'l' then

opcode <= opcode in;

out flag <= out flag in;

pc <= pc_in;

instr <= instr in;

inl <= inl in;

in2 <= in2 in;

mem wr en <= mem_wr_en_in;

mem rd en <= mem rd en in;

wb _en <= wb _en in;

wb idx <= wb _idx in;

alu mode <= alu mode in;




end 1if;
end if;

end processy

opcode out <= opcode;

out flag out <= out flag;

pc _out <= pc;

instr out <= instr;

inl out <= inl;

in2 out <= in2;

mem wr en out <= mem wr en;

mem rd en out <= mem rd en;

wb_en out <= wb_en;

wb idx out <= wb_ idx;

alu mode out <= alu mode;

end Behavioral ; Behavioral

IFID_latches.vhd

library IEEE;
use IEEE.STDiLOGIC71164.ALL;

—— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;




entity IFID latches 1is
Port (

—-— CONTROL SIGNALS

clk,en,rst : in std logic;

PC_in : in STD LOGIC VECTOR (15 downto 0);
PC out : out STD LOGIC VECTOR(15 downto 0);

instr in : in STD LOGIC VECTOR (15 downto 0);
instr out : out STD LOGIC VECTOR (15 downto 0)

) ;

end IFID latches;

architecture Behavioral of IFID latches 1is

signal instr : STD LOGIC VECTOR(15 downto 0) := (others
signal PC : STDiLOGIC7VECTOR(15 downto 0) := X"FFFEF";

begin

process (clk)
begin
if rising edge(clk) then
if (rst = '1l'") then
instr <= (others => '0");

PC <= x"FFFF";

elsif en = '1l' then
instr <= instr in;
PC <= PC in;

end 1if;

end 1f;

end process;

instr out <= instr;

PC out <= PC;

end Behavioral;

'O');




Instr_decoder.vhd

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

—— DESCRIPTION
-— Takes an instruction from the fetch register (+ CLK in and EN)

-— Outputs an ALU mode code (3 bits), 3 3-bit register addresses

entity instr decoder 1is

port (
-— INPUTS
instr : in STD LOGIC VECTOR (15 downto 0);
in port : in STD LOGIC VECTOR(15 downto 0);
stall : in STD LOGIC;

-— OUTPUTS
out flag : out STD LOGIC;

rd _idxl : out STD LOGIC_VECTOR(2 downto 0);
rd idx2 : out STD LOGIC VECTOR (2 downto 0);

imm val : out STD LOGIC VECTOR (15 downto 0);
imm en : out STD LOGIC;

opcode : out STD LOGIC VECTOR(6 downto 0);
alu mode : out STD LOGIC VECTOR (2 downto 0);

mem wr en : out STD LOGIC;




mem rd en : out STD LOGIC;
wb en : out STD LOGIC;

wb idx : out STD LOGIC VECTOR(Z2 downto 0);
mask : out STD LOGIC VECTOR(15 downto 0)

) ;

end instr decoder;

architecture Behavioral of instr decoder is

begin
process (instr, in port) begin
if stall = '1l' then
opcode <= (others => '0'");
alu mode <= (others => '0"');

out flag <= '0';

wb en <= '0"';

wb idx <= (others => '0'");

rd idxl <= (others => '0");

rd idx2 <= (others => '0");

imm val <= (others '0');

imm en <= '1';

mem wr en <= '0';

mem rd en <= '0';

mask <= x"0000";

else

case to_integer (unsigned(instr (15 downto 9))) is

when 0 =>
-- A0
opcode <= instr (15 downto 9);

alu mode <= (others => '0");




out flag

wb en <= '0';

wb idx <= (others => '0");

rd idxl <= (others => '0");

rd idx2 <= (others => '0");

imm val <= (others => '0");

imm en <= '0';

mem wr en <= '0';

mem rd en <= '0';
mask <= x"FFFEF";
when 1 | 2 | 3 =>
-- Al
opcode <= instr (15 downto 9);
alu mode <= instr (1l downto 9);

out flag <= '0";

wb en <= '1"';

wb idx <= instr (8 downto 6);

rd idxl <= instr (5 downto 3);
rd idx2 <= instr (2 downto 0);

imm val <= (others => '0");

imm en <= '0';

mem wr _en <= '0';

mem rd en <= '0';

mask <= x"FFFEF";

when 4 =>
-— Al (NAND CASE)
opcode <= instr (15 downto 9);

alu mode <= instr(ll downto 9);




out flag

wb en <= '1';

wb idx <= instr(8 downto 6);

rd idxl <= instr (8 downto 6);

rd idx2 <= instr (5 downto 3);

imm val <= (others => '0");

imm en <= '0';

mem wr en <= '0';

mem rd en <= '0';

mask <= xX"FFFF";
when 5 | 6 =>
-- A2
opcode <= instr (15 downto 9);

alu mode <= instr (1l downto 9);

out flag <= '0";

wb en <= 'l1';

wb idx <= instr(8 downto 6);

rd idxl <= instr (8 downto 6);

rd idx2 <= (others => '0");

imm val (3 downto 0) <= instr (3 downto 0);
imm val(l5 downto 4) <= (others => instr(3));

imm val <= std logic vector (resize (signed(instr (3

imm en <= '1'";

mem wr en <= '0';

mem rd en <= '0';

mask <= x"FFFF";

when 7 =>
-—-TEST
opcode <= instr (15 downto 9);

alu mode <= instr(ll downto 9);




out flag

wb en <= '0';

wb idx <= (others => '0");

rd idxl <= instr (8 downto 6);

rd idx2 <= (others => '0");

imm val <= (others => '0");

imm en <= '0';

mem wr en <= '0';

mem rd en <= '0';
mask <= x"FFFEF";
when 64 | 65 | 66 =>
-- Bl
opcode <= instr (15 downto 9);
alu mode <= (others => '0");

out flag <= '0";

wb en <= '0'";

wb idx <= (others => '0');

rd idxl <= (others => '0");
rd idx2 <= (others => '0");

imm val (8 downto 0) <= instr (8 downto 0);

imm val (l5 downto 9) <= (others => instr(8));

imm val <= std logic vector(resize(signed(instr (8

imm en <= '1';

mem wr _en <= '0';

mem rd en <= '0';

mask <= x"FFFEF";

when 67 | 68 | 69 =>
-- B2




opcode <= instr (15 downto 9);

alu mode <= (others => '0");

out flag <= '0';

wb en <= '0'";

wb idx <= (others => '0');

rd idxl <= instr (8 downto 6);
rd idx2 <= (others => '0");

imm val (5 downto 0) <= instr (5 downto 0);
imm val (15 downto 6) <= (others => instr(5));

imm val <= std logic vector(resize(signed(instr (5

imm en <= '1';

mem wr _en <= '0';

mem rd en <= '0';

mask <= x"FFFF";
when 70 =>
--— BR.SUB

opcode <= instr (15 downto 9);

alu mode <= (others => '0");

out flag <= '0'";

wb en <= '1';

wb idx <= "111";

rd idxl <= instr (8 downto 6);
rd idx2 <= (others => '0");

imm val (5 downto 0) <= instr (5 downto 0);
imm val (15 downto 6) <= (others => instr(5));
imm val <= std logic vector(resize(signed(instr (5

imm en <= '1';

mem wr en

mem rd en




mask <= x"FFFEF";

when 71 =>
—— RETURN

opcode <= instr (15 downto 9);

alu mode <= (others => '0");

out flag <= '0';

wb en <= '0';

wb idx <= (others => '0');

rdiidxl <= "111";
rd idx2 <= (others => '0");

imm val <= (others => '0");

imm en <= '0';

mem wr _en <= '0';

mem rd en <= '0';

mask <= x"FFFF";

16 =>

opcode <= instr (15 downto 9);
alu mode <= (others => '0");

out flag <= '0';

wb en <= 'l1';

wb idx <= instr(8 downto 6);

rd idxl <= instr (5 downto 3);

rd idx2 <= (others => '0'");

imm val <= (others '0');

imm en <= '0';

mem wr _en <= '0';

mem rd en <= '1';

mask <= xX"FFFF";




when 17 =>
opcode <= instr (15 downto 9);

alu mode <= (others => '0");

out flag <= '0';

wb en <= '0';

wb idx <= (others => '0");

rd idxl <= instr (8 downto 6);

rd idx2 <= instr (5 downto 3);

imm val <= (others => '0");

imm en <= '0';

mem wr en <= 'l1';

mem rd en <= '0';

mask <= xX"FFFF";

when 18 =>
--LOADIMM
opcode <= instr (15 downto 9);
alu mode <= "001"; -- Need to add the masked r7 to

the immediate wvalue

out flag <= '0';

wb en <= 'l'; -- Need to write back to register r7

wb idx <= "111";

rd idxl <= "111";

rd idx2 <= (others => '0'");
imm en <= '1';
mem wr en <= '0';

mem rd en <= '0';

-—- Modulating imm val and mask based on changing

upper or lower bits of r7




imm val <= (others => '0");

if (instr(8) = '1') then

mask <= x"00FF";

imm val (15 downto 8) <= instr(7 downto 0);
elsif (instr(8) = '0') then
mask <= x"FFOO";

imm val (7 downto 0) <= instr (7 downto 0);

end if;

when 19 =>
opcode <= instr (15 downto 9);
alu mode <= (others => '0");

out flag '0';

wb en <= '1";

wb idx <= instr (8 downto 6);

rd idxl <= instr (5 downto 3);
rd idx2 <= (others => '0");

imm val <= (others => '0");

imm en <= '0';

mem wr en <= '0';

mem rd en <= '0';
mask <= x"FFFF";
when 32 =>
OUT PORT
opcode <= (others => '0");

alu mode <= (others => '0");

out flag <= '1"';




wb en <= '0';

wb idx <= (others => '0');

rd idxl <= instr(8 downto 6);
rd idx2 <= (others => '0");

imm val <= (others '0');

imm en <= '0';

mem wr _en <= '0';

mem rd en <= '0';
mask <= x"FFFF";
when 33 =>
IN PORT
opcode <= (others => '0");
alu mode <= "001";

out flag <= '0";

wb en <= 'l1';

wb idx <= instr(8 downto 6);

rd idxl <= (others => '0");

rd idx2 <= (others => '0");

imm val <= in port;

imm en <= '1'";

mem wr en <= '0';

mem rd en <= '0';

mask <= x"0000";

when others =>
null;
end case;
end 1f;

end process;

end Behavioral;




MEMWB_latch.vhd

library IEEE;
use IEEE.std logic 1164.all;

use leee.std logic unsigned.all;

entity MEMWB latches is
port (
—-— CONTROL SIGNALS

clk,en,rst : in std logic;

-— INPUTS

pc_in,instr in : in std logic vector (15 downto 0);
wb data in : in std logic vector (15 downto 0);

wb en in : in std logic;

wb idx in : in std logic vector (2 downto 0);

—-— OUTPUTS
pc_out,instr out : out std logic vector (15 downto 0);
wb data out : out std logic vector (l5 downto 0);
wb en out : out std logic;
wb idx out : out std logic vector (2 downto 0)
) i
end MEMWB latches;

architecture Behavioral of MEMWB latches is

signal wb _data : std logic vector (15 downto 0);
wb en : std logic := '0';

wb idx : std logic vector (2 downto 0);
PC : std logic vector(l5 downto 0) := x"FFFF";

instr : std logic vector(l5 downto 0) := x"0000";

process (clk)

begin

if rising edge(clk) then
if (rst = '1l'") then




pc <= x"FFFEF";
instr <= (others => '0"');
wb data <= (others => '0");
wb en <= '0'";
wb idx <= (others => '0");
elsif (en = '"1l'") then
pc <= pc_in;
instr <= instr in;
wb data <= wb data in;
wb en <= wb_en in;
wb idx <= wb idx in;
end if;
end 1if;

end process;

pc_out <= pc;

instr out <= instr;

wb data out <= wb data;
wb_en out <= wb_en;

wb idx out <= wb_ idx;

end Behavioral;

Mem_sel.vhd

Company:

Engineer:

Create Date: 03/24/2025 05:38:19 PM
Design Name:

Module Name: mem sel - Behavioral
Project Name:

Target Devices:

Tool Versions:

Description:

Dependencies:




Revision:
-— Revision 0.01 - File Created

-— Additional Comments:

use IEEE.STD LOGIC 1164.ALL;

—-— Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

—--use UNISIM.VComponents.all;

entity mem sel is

Port ( pc : in STD LOGIC VECTOR (15 downto O0);
mem select : out STD LOGIC;
addr : out STD LOGIC VECTOR (15 downto 0));

end mem sel;

architecture Behavioral of mem sel is

begin
process (pc) begin

mem select <= pc(ll);

addr <= (others => '0");
addr (10 downto 0) <= pc (10 downto 0);
end process;

end Behavioral;




library IEEE;
use IEEE.STD LOGIC 1164.ALL;

—-— Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values

--use IEEE.NUMERIC STD.ALL;

—-— Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity mux is
port (
en . std logic;
inO : ] std logic vector (15 downto 0);
inl s ] std logic vector (15 downto 0);
output : out std logic vector (15 downto O0)
) ;

end mux;

architecture Behavioral of mux is

begin
process (en, in0, inl)
begin
if en = '1l' then
output <= inl;
else
output <= 1in0;

end 1f;

end process;

end Behavioral;




Register_file.vhd

library IEEE;

use IEEE.std logic 1164.all;

use ieee.std logic unsigned.all;

use IEEE.numeric std.all; -- use that, it's a better coding guideline
entity register file 1is

port (

-—- Control Signals

rst,clk: in std logic;

-- Reading signals
rd indexl,rd index2 : in std logic vector (2 downto 0);

rd datal,rd data2: out std logic vector(l5 downto 0);

--Writing signals
wr_index: in std logic vector (2 downto 0Q);
wr data: in std logic vector (l5 downto 0);

wr_en: in std logic;

rO0,rl,r2,r3,r4,r5,r6,r7: out std logic vector (l5 downto O0)
)

end register file;

architecture behavioural of register file 1is
type reg array is array (integer range 0 to 7) of

std logic vector (15 downto 0);

signal reg file : reg array := (

x"0000",

x"0001",

x"0002",

x"0003",

x"0004",

x"0005",

x"0006", --IMM storage
x"0007" --PC storage




(clk, rst)
begin
if rst = '1l' then
for i in 0 to 7 1lo
reg file(1)

end loop;
elsif not rising edge(clk) and wr en = 'l' then
reg file(to integer (unsigned(wr index))) <=
end 1f;

end pr

rd datal <= reg file(to integer (unsigned(rd indexl)));

rd data2 <= reg file(to integer (unsigned(rd index2)));

r0
rl
r2
r3
rd
r5
ré
r7

end behavioural;
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