
‭Embedded Discrete Cosine Transform‬

‭SENG 440 Final Project Report‬

‭Joel Chamberlain (SENG) - V00928917‬

‭joelchamberlain@uvic.ca‬

‭Mattias Kroeze (CENG) - V00934043‬

‭kroeze@uvic.ca‬

‭1‬

mailto:joelchamberlain@uvic.ca
mailto:kroeze@uvic.ca

‭Abstract‬

‭In this project, we set out to implement the Discrete Cosine Transform (DCT) algorithm in an embedded‬
‭systems context. To complete this, we would implement the DCT using Loeffler’s Algorithm and further‬
‭improve it by applying software optimization techniques that are relevant for the given algorithm. To test‬
‭the implementation that we developed, we created a test bench that will outline the performance of each‬
‭iteration of the algorithm, each of which used a different type of optimization technique, followed by a‬
‭fully optimized final version. We had success in exploring different optimizations that could be used for‬
‭the DCT algorithm and found large improvements when using NEON.‬

‭Introduction‬

‭Digital Signal Processing (DSP) is a key tool in modern computing, used in a varying range of‬
‭applications such as communication and multimedia. The Discrete Cosine Transform (DCT) is one such‬
‭DSP tool that is widely used as a pre-processing step in multimedia compression. Although it has the‬
‭potential to be quite powerful, specific implementations vary in efficiency given the large amount of‬
‭computation required. As embedded systems get smaller, the need for more efficient implementations of‬
‭algorithms is crucial. This applies to products and services such as camera sensors, streaming, and IoT‬
‭devices.‬

‭The DCT at its core is a mathematical technique used to transform a signal from the time domain to the‬
‭frequency domain, which is typically then used in tandem with compression techniques. The DCT is‬
‭typically used in JPEG image processing, usually processing 8x8 blocks of data at a time. At its simplest‬
‭form, the DCT is an extremely expensive operation to perform and given that there is a large demand for‬
‭the DCT to be used in small systems, there have been a plethora of different implementations that attempt‬
‭to tackle the efficiency of this algorithm.‬

‭Although there are multiple versions of the DCT algorithm, Loeffler's Algorithm is a popular‬
‭implementation in both software and hardware solutions given that the number of calculations have been‬
‭reduced significantly (namely 64 multiplications to 11) while maintaining consistency. Given this increase‬
‭in efficiency, it is incredibly useful when working with embedded systems given the need for this‬
‭reduction in computational load.‬

‭This project focuses on implementing the 8×8 DCT using Loeffler’s algorithm on an ARM Cortex-A15‬
‭processor, emulated via QEMU. The ARM Cortex-A15 is a high-performance member of the ARMv7-A‬
‭architecture family, supporting SIMD instructions through the NEON engine, which can be leveraged to‬
‭further accelerate the DCT. The choice of an emulated environment allows controlled performance testing‬
‭while preserving the characteristics of an embedded ARM system.‬

‭2‬

‭Objectives‬
‭The objectives of this project are to:‬

‭1.‬ ‭Implementation:‬‭Create a working implementation of‬‭the 8x8 DCT using Loeffler’s algorithm in‬
‭C, targeted for an ARM system.‬

‭2.‬ ‭Optimization:‬‭Investigate compiler-level optimizations,‬‭algorithmic refinements, and potential‬
‭SIMD acceleration using NEON instructions.‬

‭3.‬ ‭Performance Analysis:‬‭Measure the performance of the‬‭different DCT implementations we have‬
‭implemented and experimented with, as well as compare and contrast the results.‬

‭Specifications‬
‭●‬ ‭Processor:‬‭ARM Cortex-A15 (emulated via QEMU virt-2.11‬‭machine type)‬
‭●‬ ‭Architecture:‬‭ARMv7-A (32-bit)‬
‭●‬ ‭Compiler:‬‭gcc 8.2.1‬

‭Performance Achieved‬
‭The performance achieved for the fully optimized version of our Loeffler’s DCT implementation was‬
‭quite fast in comparison to our other less favourable implementations, with a speed increase of 78.2%.‬

‭Contributions‬
‭●‬ ‭Implemented Loeffler’s algorithm for the DCT in C.‬
‭●‬ ‭Optimized for the ARM Cortex-A15 architecture using NEON SIMD to enable parallel floating‬

‭point operations.‬
‭●‬ ‭Applied compiler optimization flags.‬
‭●‬ ‭Reduced memory overhead by storing intermediate results in registers.‬
‭●‬ ‭Created a test bench to test the effectiveness of our implementations.‬

‭3‬

‭Report Organization‬
‭The following sections discuss the function of each section in the report as well as their purpose.‬

‭Abstract‬
‭Summarize the approach, process, functionality, successes, and shortcomings of the project as a whole.‬

‭Introduction‬
‭Introduce the project and what we want to achieve, outline the specifications, the performance achieved,‬
‭the contributions, as well as outlining the different sections of the report.‬

‭Background‬
‭Discuss the problem that this project is tasked to complete, as well as any information that is required to‬
‭know before understanding the problem that we are trying to solve.‬

‭Algorithm Design‬
‭Discuss the chosen algorithm design, what were the decisions for critical portions of the algorithm such as‬
‭how we are dealing with values, registers, variables, and what bit width we chose.‬

‭C Code and Optimization‬
‭Outline snippets of the C code that was developed, and highlight the optimizations used to improve the‬
‭code performance.‬

‭Compilation and Assembly‬
‭Describe the process of compiling the DCT implementation for the ARMv7-A architecture, including the‬
‭toolchain used, compiler flags, generation of assembly output, and how the build was tailored for‬
‭execution on the QEMU-emulated Cortex-A15 platform.‬

‭Results‬
‭Enumerate the performance of the developed solution, discuss the overall results of the project.‬

‭Improvements‬
‭Discuss possible improvements that could be made to the developed solution given the current‬
‭implementation.‬

‭Conclusions‬
‭Draw conclusions from the project.‬

‭4‬

‭Background‬

‭Discrete Cosine Transform (DCT)‬

‭The Discrete Cosine Transform (DCT) is a mathematical technique used to transform a signal or image‬
‭from its spatial or time domain to the frequency domain which aids in data compression techniques. The‬
‭DCT is equivalent to the Discrete Fourier Transform (DFT) of real and even functions and it differs from‬
‭the DFT’s use of complex numbers by using only real numbers, making it simpler. The DCT has an‬
‭energy compaction property which is very effective. It outlines that most of the signal energy is‬
‭concentrated in the few low frequency coefficients, which makes the DCT very effective in calculation,‬
‭since few DCT coefficients can represent an entire block of pixels.‬

‭It is a pivotal technique in signal processing, data compression, mostly used in image and video‬
‭compression for use in formats such as JPEG for images and MPEG for video. N by N blocks of data are‬
‭processed with a common choice for N is 8. As multimedia devices get smaller, the need for optimizing‬
‭this technique is pivotal in how people will consume multimedia, as it will need to have increased‬
‭performance on smaller embedded machines.‬

‭Mathematical Background‬
‭There are a few versions of the DCT, but in its most simple form we have the 1D DCT. The 1D DCT for‬
‭inputs x(i) and outputs X(u) is defined as:‬

‭Figure 1: 1D DCT Equation.‬

‭The 2D DCT, which is the version used in image compression, can be described as applying the 1D DCT‬
‭to each row of the image matrix, followed by applying the 1D DCT to each column of the image matrix‬
‭and can be defined as:‬

‭Figure 2: 2D DCT Equation.‬

‭5‬

‭Computational Challenges of DCT‬
‭This naive implementation of the DCT is computationally expensive given that this approach would yield‬
‭a time complexity of O(N‬‭2‬‭) for an N by N matrix. Since‬‭this would also involve many floating point‬
‭multiplications (which are quite expensive to calculate) the cost of the naive implementation of the DCT‬
‭would be enormous and would not be an effective solution on an embedded system.‬

‭Loeffler’s Algorithm‬

‭To address the issue of this high computational need, as well as power draw, there have been several‬
‭implementations of the DCT that try to tackle these issues, making an efficient version of the DCT that‬
‭can be utilized on embedded systems and smaller devices. Loeffler’s Algorithm is one such algorithm that‬
‭is a fast, factorized version of the 8-point DCT. It was developed in 1989 by Loeffler, Ligtenberg, and‬
‭Moschytz. It minimizes the number of multiplications needed, making it ideal for systems where‬
‭computation cost and power draw are a concern. It completes a theoretical minimum number of‬
‭multiplications at 11 and 29 additions for an 8-point DCT. This algorithm was the basis for many JPEG‬
‭image encoders, both in software and hardware.‬

‭The algorithm is structured into stages based on the transformation of an 8×8 input matrix into its‬
‭corresponding frequency coefficients. These stages include:‬

‭●‬ ‭Reflectors:‬‭Combine symmetric input elements using‬‭addition and subtraction, forming the‬
‭butterfly operations that reduce computational complexity.‬

‭●‬ ‭Rotators:‬‭Perform approximate cosine-based multiplications‬‭using fixed or reduced-precision‬
‭constants, enabling efficient implementation on hardware with limited floating-point‬
‭performance.‬

‭●‬ ‭Reordering:‬‭Arrange the outputs from the previous‬‭stages into their correct positions in the final‬
‭DCT coefficient matrix.‬

‭A diagram of Loeffler’s Algorithm can be seen below:‬

‭Figure 3: Diagram of Loeffler’s Algorithm and Related Equations.‬

‭6‬

‭Embedded System Context‬
‭Since we are utilizing the Cortex-A15, which is a high-performance ARM processor based on the‬
‭ARMv7-A 32-bit architecture, we can utilize NEON instructions, which allow for simultaneous‬
‭operations on multiple data elements, further improving this implementation. NEON is quite useful‬
‭especially in an embedded systems context, given that we can perform vectorized addition, subtraction,‬
‭and multiplication efficiently, which will aid in improving the performance of the DCT in an embedded‬
‭world.‬

‭Algorithm Design‬
‭For all intermediate values, we chose int32_t to retain sufficient precision while still using int64_t to‬
‭temporarily hold products, before shifting to restore scale. With the largest NEON vector type (q‬
‭registers), each register holds 4 lanes of 32-bit integers (int32x4_t), which allows us to vectorize the entire‬
‭first stage of Loeffler’s operation effectively. Using int64_t vectors would halve our vector width and‬
‭provide more fractional precision than required, and int16_t would underutilize the available bit width‬
‭and would provide more vectorized lanes than needed for the sum and diff operations.‬

‭To keep the implementation compliant with the integer-only restriction, we define a global fixed-point‬
‭scale. To pick a scale that maximizes use of the 32-bit width, we first determine the maximum possible‬
‭value anywhere across the Loeffler’s data flow.‬

‭For an 8-bit input image, the worst case is an all-white block. In the first 1D pass, the highest term is the‬
‭sum of the 8 inputs: 8 × 255 = 2040. After the second pass (to form the 2D DCT), the highest term sums‬
‭eight of that value again, resulting in a maximum of 16320.‬

‭Therefore, the highest fixed-point scale that still fits within a signed 32-bit integer is Q17, since 16320 <<‬
‭17 = 2139095040, which is below the max representable signed value of 2147483647.‬

‭The input to our Loeffler implementation is an array of eight int32_t values pre-shifted to our global Q17‬
‭scale. We do this outside the Loeffler routine so the 2D pass does not shift and unshift twice. We left-shift‬
‭the 8×8 input block once and rescale the output once at the end. Input images are stored as 1D vectors in‬
‭images.h. We gather each 8×8 block with a sliding window and write the DCT result back to its‬
‭corresponding location in a 320×320 output array.‬

‭Within the rotators, we multiply the operands by fractional constants. To satisfy the integer-only‬
‭constraint, these constants are precomputed, scaled to Q17, rounded to their nearest integer, and stored in‬
‭the header file. We define a ROUND_SHIFT_Q macro that adds 1 << 16 before shifting right by our‬
‭global Q17 scale to perform round-to-nearest. This normalizes our multiplication products back to Q17‬
‭and reverts our finalized DCT transformed values back to the integer scale.‬

‭7‬

‭To manage registers effectively, we use NEON in Stage 1 to compute all sums and differences in two‬
‭vector operations. We load the low four inputs into one q register and the high four into another. We then‬
‭reverse the entire high vector by flipping pairs using vrev64q_s32 and rotating by two lanes with‬
‭vextq_s32. Reversing the high vector lets us compute sums and diffs by aligned indices. Compiled‬
‭assembly code is shown in the following block to demonstrate the use of NEON Q registers, along with‬
‭the flip and rotate operations required to reverse lane order for the butterfly operations.‬

‭vld1.32‬ ‭{d20-d21}, [r3]!‬ ‭@‬‭Load low bits into‬‭q10‬
‭vld1.32‬ ‭{d16-d17}, [r3]‬ ‭@‬‭Load hi bits into q8‬
‭vrev64.32‬ ‭q8, q8‬ ‭@‬‭Reverse to align indices‬
‭vext.8‬ ‭q8, q8, q8, #‬‭8‬ ‭@‬‭Reverse to align indices‬
‭vsub.i32‬ ‭q9, q10, q8‬ ‭@‬‭Calc diffs - store in‬‭q9‬
‭vrev64.32‬ ‭q9, q9‬ ‭@‬‭Revert lane order‬
‭vext.8‬ ‭q9, q9, q9, #‬‭8‬ ‭@‬‭Revert lane order‬
‭movw‬ ‭sl, #‬‭12785‬ ‭@‬‭Start storing rotator‬‭constants‬
‭vmov.32‬ ‭r7, d19[‬‭0‬‭]‬ ‭@‬‭Put calculated diffs‬‭into GPRs‬
‭vmov.32‬ ‭r9, d18[‬‭1‬‭]‬ ‭@‬‭Put calculated diffs‬‭into GPRs‬
‭movw‬ ‭r6, #‬‭64277‬ ‭@‬‭Start storing rotator‬‭constants‬
‭movw‬ ‭r5, #‬‭52751‬ ‭@‬‭Start storing rotator‬‭constants‬
‭vmov.32‬ ‭r4, d19[‬‭1‬‭]‬ ‭@‬‭Put calculated diffs‬‭into GPRs‬
‭movw‬ ‭r1, #‬‭54491‬ ‭@‬‭Start storing rotator‬‭constants‬
‭movw‬ ‭r8, #‬‭36410‬ ‭@‬‭Start storing rotator‬‭constants‬
‭movw‬ ‭r2, #‬‭29126‬ ‭@‬‭Start storing rotator constants‬
‭vadd.i32‬ ‭q8, q8, q10‬ ‭@‬‭Calc sums - store in‬‭q8‬
‭vmov.32‬ ‭r3, d18[‬‭0‬‭]‬ ‭@‬‭Put calculated diffs‬‭into GPRs‬

‭From our empirical results, we only gained performance by vectorizing Stage 1. Beyond that point, we‬
‭observed a significant performance hit, likely from the extra memory traffic and lane rearrangements‬
‭needed for each subsequent operation. For the remaining stages, we operate in scalars, assigning each‬
‭value to a variable that describes its stage and lane (e.g. s1_7). While we define more variable names‬
‭than necessary and include many redundant renaming operations, the code is much easier to work with‬
‭when following the provided dataflow diagram. Analysis of the resulting assembly code confirms that the‬
‭compiler effectively handles register allocation and eliminates redundant renames, so there is no‬
‭performance penalty. For example, while R2 contains the result of the stage 3 lane 0 sum, the compiler‬
‭skips the redundant s4_0 = s3_0 step and writes R2 directly to the output array’s v[0], as highlighted in‬
‭red.‬

‭add‬ ‭r2‬‭, lr, r3‬ ‭@‬‭s3_0 = s2_0 + s2_1‬
‭sub‬ ‭lr‬‭, lr, r3‬ ‭@‬‭s3_1 = s2_0 - s2_1‬
‭add‬ ‭r3, ip, r1‬ ‭@‬‭s4_7 = s3_7 + s3_4‬
‭sub‬ ‭r1, r1, ip‬ ‭@‬‭s4_4 = s3_7 - s3_4‬
‭str‬ ‭r2‬‭, [r0]‬ ‭@‬‭v[‬‭0‬‭] (s4_0)‬
‭str‬ ‭lr‬‭, [r0, #‬‭16‬‭]‬ ‭@‬‭v[‬‭4‬‭] (s4_1)‬
‭str‬ ‭sl, [r0, #‬‭24‬‭]‬ ‭@‬‭v[‬‭6‬‭] (s4_3)‬
‭stmib‬ ‭r0, {r3, r6}‬ ‭@‬‭v[‬‭1‬‭], v[‬‭2‬‭] (s4_7, s4_2)‬
‭str‬ ‭r1, [r0, #‬‭28‬‭]‬ ‭@‬‭v[‬‭7‬‭] (s4_4)‬
‭str‬ ‭r4, [r0, #‬‭12‬‭]‬ ‭@‬‭v[‬‭3‬‭] (s4_5)‬
‭str‬ ‭r8, [r0, #‬‭20‬‭]‬ ‭@‬‭v[‬‭5‬‭] (s4_6)‬

‭8‬

‭C Code and Optimization‬
‭This section will outline snippets of the C code that were used in the final optimized version of our‬
‭version of Loeffler's algorithm implemented in C. It will outline the helper functions, then the full‬
‭Loeffler DCT function stage by stage, along with the corresponding diagram of that stage.‬

‭The versions of Loeffler’s algorithm that were developed for this project are as follows:‬
‭●‬ ‭Routine: Implemented using routines only.‬
‭●‬ ‭Inline: Implemented using inline functions.‬
‭●‬ ‭Macro: Implemented using macros.‬
‭●‬ ‭Register: Implemented leveraging registers.‬
‭●‬ ‭NeonS1: Using NEON for Stage 1 in Loeffler’s only.‬
‭●‬ ‭NeonReflect: Using NEON for the reflectors in all stages.‬
‭●‬ ‭NeonFull: Using NEON for reflectors and rotators in all stages.‬
‭●‬ ‭Optimized: A fully complete version, using the best optimizations from all other versions.‬

‭Let’s walk through the final optimized version and highlight some important pieces in the code.‬

‭#define‬‭Q_SCALE‬‭17‬
‭#define‬‭Q_ONE (‬‭1‬‭<< Q_SCALE)‬
‭#define‬‭ROUND_SHIFT_Q(x) (int32_t)(((x) + (‬‭1LL‬‭<<‬‭(Q_SCALE-‬‭1‬‭))) >> Q_SCALE)‬

‭// HARDCODED SCALED CONSTANTS‬
‭#define‬‭C1‬ ‭128554‬ ‭// cos(pi/16) << 17‬
‭#define‬‭C3‬ ‭108982‬ ‭// cos(3*pi/16) << 17‬
‭#define‬‭S1‬ ‭25570‬ ‭// sin(pi/16) << 17‬
‭#define‬‭S3‬ ‭72820‬ ‭// sin(3*pi/16) << 17‬
‭#define‬‭R2C6‬ ‭70936‬ ‭// (√2*cos(6*pi/16)) << 17‬
‭#define‬‭R2S6‬ ‭171254‬ ‭// (√2*cos(6*pi/16)) << 17‬
‭#define‬‭R2‬ ‭185364‬ ‭// √2 << 17‬

‭// MACRO DEFINITIONS‬

‭#define‬‭ROTATOR‬‭(a, b, C, S)‬‭do‬‭{‬ ‭\‬
‭int64_t _ta = (a), _tb = (b); \‬
‭(a) = ROUND_SHIFT_Q((_ta*(C) + _tb*(S))); \‬
‭(b) = ROUND_SHIFT_Q((-_ta*(S) + _tb*(C))); \‬

‭}‬‭while‬‭(‬‭0‬‭)‬

‭The ROUND_SHIFT_Q macro takes x (a 64-bit integer) in Q_SCALE fixed-point format and converts it‬
‭back to a signed 32-bit integer with rounding. It first adds a rounding bias of 1 << (Q_SCALE - 1), which‬
‭ensures round-to-nearest behaviour when the value is right-shifted. It then performs an arithmetic right‬
‭shift by Q_SCALE bits to remove the fractional portion, and finally casts the result to int32_t.‬

‭9‬

‭The second helper function is the rotator macro that is used frequently in the Loeffler function. This‬
‭rotator takes two input values, a and b, and utilizes the round and shift macro. The parameters C and S are‬
‭the cosine and sine rotation values, stored as precomputed and scaled constants. Q_SCALE is the number‬
‭of bits shifted for the fixed-point representation that we want to achieve (17). In this macro, we copy a‬
‭and b into temporary int64_t variables so that we do not overflow. The resulting values a and b are‬
‭calculated using the provided C and S constants, then cast to int32_t.‬

‭// STAGE 1 NEON‬
‭int32x4_t lo =‬‭vld1q_s32‬‭(&v[‬‭0‬‭]);‬‭// v0 v1 v2 v3‬
‭int32x4_t hi =‬‭vld1q_s32‬‭(&v[‬‭4‬‭]);‬‭// v4 v5 v6 v7‬
‭int32x4_t hi_rev =‬‭vrev64q_s32‬‭(hi);‬‭// v5 v4 v7‬‭v6‬
‭hi_rev =‬‭vextq_s32‬‭(hi_rev, hi_rev,‬‭2‬‭);‬‭// v7 v6‬‭v5 v4‬

‭int32x4_t sums =‬‭vaddq_s32‬‭(lo, hi_rev);‬
‭int32x4_t diffs =‬‭vsubq_s32‬‭(lo, hi_rev);‬

‭// Reverse diffs‬
‭diffs =‬‭vrev64q_s32‬‭(diffs);‬
‭diffs =‬‭vextq_s32‬‭(diffs, diffs,‬‭2‬‭);‬

‭int32_t s1_0 =‬‭vgetq_lane_s32‬‭(sums,‬‭0‬‭);‬
‭int32_t s1_1 =‬‭vgetq_lane_s32‬‭(sums,‬‭1‬‭);‬
‭int32_t s1_2 =‬‭vgetq_lane_s32‬‭(sums,‬‭2‬‭);‬
‭int32_t s1_3 =‬‭vgetq_lane_s32‬‭(sums,‬‭3‬‭);‬
‭int32_t s1_4 =‬‭vgetq_lane_s32‬‭(diffs,‬‭0‬‭);‬
‭int32_t s1_5 =‬‭vgetq_lane_s32‬‭(diffs,‬‭1‬‭);‬
‭int32_t s1_6 =‬‭vgetq_lane_s32‬‭(diffs,‬‭2‬‭);‬
‭int32_t s1_7 =‬‭vgetq_lane_s32‬‭(diffs,‬‭3‬‭);‬

‭This code snippet represents Stage 1 of the Loeffler DCT algorithm. First, we load the first 4 values into‬
‭NEON registers lo and hi, then we take the reverse of hi so that we can align the data pairs for use in the‬
‭reflector operations. Once we have the data prepared, we will calculate the sums and differences, which‬
‭are in the reflector stage of the operation. After the calculations have been completed, we reverse the diff‬
‭order so that we can line up the data for the next stages in the algorithm, as well as extract the results of‬
‭each value into int32_t. Notice that we are optimizing these operations by use of NEON registers, namely:‬

‭1.‬ ‭vldq_s32: Vector load for 128-bit int and 32-bit signed integers‬
‭a.‬ ‭Loads 4 consecutive 32-bit ints from memory into a NEON register‬

‭2.‬ ‭vrev64q_s32: Vector reverse with 64-bit elements and 32-bit signed integers.‬
‭a.‬ ‭Reverses the order of pairs of 2 32-bit integers.‬

‭3.‬ ‭vextq_s32: Vector extract with 32-bit signed integers.‬
‭a.‬ ‭Extracted a shifted vector by concatenating two vectors that select a continuous slice‬

‭starting from an offset.‬
‭4.‬ ‭vgetq_lane_s32: Vector get lane 32-bit signed integer.‬

‭a.‬ ‭Extract the single 32-bit int at a specified index.‬

‭10‬

‭// STAGE 2‬

‭int32_t s2_0 = s1_0 + s1_3;‬
‭int32_t s2_1 = s1_1 + s1_2;‬
‭int32_t s2_2 = s1_1 - s1_2;‬
‭int32_t s2_3 = s1_0 - s1_3;‬

‭int32_t s2_4 = s1_4;‬
‭int32_t s2_5 = s1_5;‬
‭int32_t s2_6 = s1_6;‬
‭int32_t s2_7 = s1_7;‬
‭ROTATOR‬‭(s2_4, s2_7, C3, S3);‬
‭ROTATOR‬‭(s2_5, s2_6, C1, S1);‬

‭This code snippet represents Stage 2 of the Loeffler DCT algorithm. For the even (top) values, we‬
‭compute the reflector operations as scalars and store them as new variables for use later in the algorithm.‬
‭Odd values, however, will be redundantly renamed for clarity, then rotated using our defined macro.‬

‭// STAGE 3‬

‭int32_t s3_0 = s2_0 + s2_1;‬
‭int32_t s3_1 = s2_0 - s2_1;‬

‭int32_t s3_2 = s2_2;‬
‭int32_t s3_3 = s2_3;‬
‭ROTATOR‬‭(s3_2, s3_3, R2C6, R2S6);‬

‭int32_t s3_4 = s2_4 + s2_6;‬
‭int32_t s3_5 = s2_7 - s2_5;‬
‭int32_t s3_6 = s2_4 - s2_6;‬
‭int32_t s3_7 = s2_7 + s2_5;‬

‭This represents Stage 3 in the Loeffler DCT algorithm. The top two values are reflected, the middle‬
‭values are rotated using the corresponding floating point constants, R2C6 and R2S6, for this stage. Then‬
‭finally, the odd parts are reflected.‬

‭11‬

‭// STAGE 4‬

‭int32_t s4_0 = s3_0;‬
‭int32_t s4_1 = s3_1;‬
‭int32_t s4_2 = s3_2;‬
‭int32_t s4_3 = s3_3;‬

‭int32_t s4_4 = s3_7 - s3_4;‬
‭int32_t s4_5 =‬‭ROUND_SHIFT_Q‬‭((int64_t)s3_5 * (int64_t)R2);‬
‭int32_t s4_6 =‬‭ROUND_SHIFT_Q‬‭((int64_t)s3_6 * (int64_t)R2);‬
‭int32_t s4_7 = s3_7 + s3_4;‬

‭This is Stage 4; we have the even values passing through to be used in the final step. The odd values are‬
‭being reflected and scaled, where s4_4 and s4_7 are being reflected, and s4_5 and s4_6 are being‬
‭multiplied by the constant R2, then rounded and right shifted using the macro ROUND_SHIFT_Q. Notice‬
‭that we cast to int64_t to ensure that there are no overflow issues.‬

‭// FINAL REORDERING‬

‭v[‬‭0‬‭] = s4_0;‬
‭v[‬‭1‬‭] = s4_7;‬
‭v[‬‭2‬‭] = s4_2;‬
‭v[‬‭3‬‭] = s4_5;‬
‭v[‬‭4‬‭] = s4_1;‬
‭v[‬‭5‬‭] = s4_6;‬
‭v[‬‭6‬‭] = s4_3;‬
‭v[‬‭7‬‭] = s4_4;‬

‭This last step is augmenting the final order of the lanes to correspond with even and odd outputs, and‬
‭storing them in our resulting vector.‬

‭12‬

‭Compilation and Assembly‬

‭Compilation and assembly were done using CMAKE. The file as well as specifications can be seen‬
‭below.‬

‭cmake_minimum_required‬‭(‬‭VERSION‬‭3.12.1‬‭)‬
‭project‬‭(DCT‬‭C‬‭)‬

‭set‬‭(CMAKE_C_STANDARD‬‭11‬‭)‬

‭add_library‬‭(dct‬‭STATIC‬
‭loeffler_optimized.c‬
‭loeffler_inline.c‬
‭loeffler_macro.c‬
‭loeffler_routine.c‬
‭loeffler_neon.c‬
‭loeffler_register.c‬

‭)‬

‭set_source_files_properties‬‭(loeffler_neon.c loeffler_optimized.c‬
‭PROPERTIES‬‭COMPILE_FLAGS‬‭"-march=armv7-a -mfpu=neon-vfpv4‬‭-mfloat-abi=hard -O3"‬‭)‬

‭add_executable‬‭(DCT main.c images.h)‬

‭target_link_libraries‬‭(DCT‬‭PRIVATE‬‭dct)‬

‭This was developed in JetBrains’ CLion IDE with a remote toolchain that builds on root@localhost:2222‬

‭Specifications:‬
‭●‬ ‭GNU Make 4.2.1‬
‭●‬ ‭gcc version 8.2.1 20180801 (Red Hat 8.2.1-2) (GCC)‬

‭Flags:‬
‭●‬ ‭-march=armv7-a: Specify the target architecture.‬
‭●‬ ‭-mfpu=neon-vfpv4: Specifies the Floating Point Unit (FPU) and SIMD extensions to use.‬
‭●‬ ‭-mfloat-abi=hard:‬‭Specifies the floating-point calling‬‭convention to use hard floating point ABI.‬
‭●‬ ‭-03: Optimization level 3, which enables aggressive compiler optimizations for speed.‬

‭Build Command:‬
‭/usr/bin/cmake --build /tmp/tmp.Ftjp5poh6g/DCT/cmake-build-debug-seng-vm --target DCT -- -j 30‬

‭13‬

‭Results‬

‭This section outlines the test bench that was created for the project, as well as any helper functions used‬
‭for result visualization.‬

‭static double‬‭bench_loop‬‭(‬‭void‬‭(*loeffler_function)(int32_t‬‭[‬‭8‬‭]),‬‭int‬‭iterations) {‬
‭static const‬‭int16_t input_raw[‬‭8‬‭] = {‬‭212‬‭,‬‭87‬‭,‬‭222‬‭,‬‭113‬‭,‬‭15‬‭,‬‭137‬‭,‬‭87‬‭,‬‭14‬‭};‬
‭int32_t v[‬‭8‬‭], input[‬‭8‬‭];‬

‭for‬‭(‬‭int‬‭j =‬‭0‬‭; j <‬‭8‬‭; ++j)‬‭// SCALE INPUT VALUES‬
‭input[j] = (int32_t) input_raw[j] << Q_SCALE;‬

‭struct‬‭timespec t0, t1;‬
‭clock_gettime‬‭(CLOCK_THREAD_CPUTIME_ID, &t0);‬

‭for‬‭(‬‭int‬‭i =‬‭0‬‭; i < iterations; ++i) {‬
‭// LOOP FOR N ITERATIONS‬
‭for‬‭(‬‭int‬‭j =‬‭0‬‭; j <‬‭8‬‭; ++j)‬‭// RESET INPUT‬

‭v[j] = input[j];‬
‭loeffler_function(v);‬

‭}‬

‭clock_gettime‬‭(CLOCK_THREAD_CPUTIME_ID, &t1);‬‭//RETURN‬‭AVG NS PER ITERATION‬
‭return‬‭((t1.‬‭tv_sec‬‭- t0.‬‭tv_sec‬‭) *‬‭1e9‬‭+ (t1.‬‭tv_nsec‬‭- t0.‬‭tv_nsec‬‭)) / iterations;‬

‭}‬

‭static void‬‭benchmark‬‭(‬‭int‬‭runs,‬‭int‬‭iterations) {‬
‭printf‬‭(‬‭"Run,Routine,Inline,Macro,Register,NeonS1,NeonReflect,NeonFull,Optimized‬‭\n‬‭"‬‭);‬
‭for‬‭(‬‭unsigned‬‭run =‬‭0‬‭; run < runs; run++) {‬

‭printf‬‭(‬‭"%u"‬‭, run);‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_routine‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_inline‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_macro‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_register‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_neon_s1‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_neon_reflect‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_neon_full‬‭,‬‭iterations));‬
‭printf‬‭(‬‭",%.2f"‬‭,‬‭bench_loop‬‭(‬‭loeffler_optimized‬‭,‬‭iterations));‬
‭putchar‬‭(‬‭'‬‭\n‬‭'‬‭);‬
‭fflush‬‭(stdout);‬

‭}‬
‭}‬

‭int‬‭main‬‭(‬‭void‬‭) {‬
‭//100 runs of 1,000,000 iterations per benchmark‬
‭benchmark‬‭(‬‭100‬‭,‬‭1000000‬‭);‬
‭return‬‭0‬‭;‬

‭}‬

‭14‬

‭This code snippet outlines the bench_loop function that was used to benchmark the runtime (in‬
‭nanoseconds) of the Loeffler implementation that was used. For test purposes, we have a dummy 8-value‬
‭array that will be used as input, as well as the number of iterations to be run to calculate an average run‬
‭time. For benchmarking purposes, we first scale the raw input data to our Q17 scale and into int32_t‬
‭values for use in fixed-point arithmetic. We get the CPU thread time using clock_gettime, then begin‬
‭looping and applying the chosen Loeffler algorithm. To finish, we get the CPU thread time at the end of‬
‭the loop of iterations, measure the total time taken divided by the number of iterations, and return that‬
‭value. We used CLOCK_THREAD_CPUTIME_ID rather than CLOCK_MONOTONIC as it was far‬
‭more stable and less variable on the current load of the host machine.‬

‭The benchmark function just runs bench_loop with every implementation of Loeffler’s and prints it to‬
‭stdout. In our case, we are benchmarking 100 runs with 1,000,000 iterations each. The results of a test‬
‭bench were:‬

‭Figure 4: Bar Chart of the Test Bench Results‬

‭Routine‬ ‭Inline‬ ‭Macro‬ ‭Register‬ ‭NeonS1‬ ‭NeonReflect‬ ‭NeonFull‬ ‭Optimized‬

‭Avg (ns)‬ ‭373.5983‬ ‭254.3293‬ ‭234.8328‬ ‭174.1445‬ ‭85.3348‬ ‭91.7535‬ ‭121.6252‬ ‭81.4246‬

‭Table 1: Test Bench Results in Nanoseconds‬

‭As we can see, the fully optimized implementation of Loeffler’s DCT had the fastest result time, whereas‬
‭the routine implementation had the slowest. The inline, macro, and register implementations were a good‬
‭initial start to optimizing the implementation, but when incorporating NEON into our implementations,‬
‭that's when we saw the most improvement to the running time of the implementations.‬

‭15‬

‭To visualize our final DCT implementation, test photos were obtained, and processing was completed:‬

‭Original‬ ‭Greyscale and Scaled‬ ‭DCT Log Visualized‬ ‭CV2 Reverted‬

‭Table 2: Original Photo, Pre-Processed, DCT Applied, Reverted.‬

‭These are the results for 3 input test images, where the first column represents the untouched original‬
‭image, the second column is the grayscale and scaled image ready for DCT, the third column is a‬
‭log-scaled visualization of the result of running the optimized 2D DCT implementation, then finally, the‬
‭reverted image that effectively reconstructs the preprocessed image used as input. The processing of these‬
‭visualizations will be discussed below.‬

‭16‬

‭from‬‭pathlib‬‭import‬‭Path‬
‭from‬‭PIL‬‭import‬‭Image‬

‭src = Path(‬‭"./lenna.png"‬‭)‬
‭name = src.stem‬
‭img = Image.open(src)‬

‭# Resize and convert to greyscale‬
‭img = img.resize((‬‭320‬‭,‬‭320‬‭)).convert(‬‭"L"‬‭)‬
‭w, h = img.size‬

‭# Save image to header for c DCT‬
‭with‬‭open‬‭(‬‭f"‬‭{‬‭name‬‭}‬‭.h"‬‭,‬‭"w"‬‭)‬‭as‬‭f:‬

‭f.write(‬‭f"const uint8_t "‬
‭f"‬‭{‬‭name.upper()‬‭}‬‭[‬‭{‬‭w * h‬‭}‬‭] =‬‭{{\n‬‭"‬‭)‬

‭for‬‭i, px‬‭in‬‭enumerate‬‭(img.getdata(),‬‭1‬‭):‬
‭f.write(‬‭f"‬‭{‬‭px‬‭}‬‭,"‬‭)‬
‭if‬‭i %‬‭16‬‭==‬‭0‬‭:‬

‭f.write(‬‭"‬‭\n‬‭"‬‭)‬

‭f.write(‬‭"};‬‭\n‬‭"‬‭)‬

‭print‬‭(‬‭f"Saved header file to‬‭{‬‭name‬‭}‬‭.h"‬‭)‬

‭#ifndef‬‭IMAGES_H‬
‭#define‬‭IMAGES_H‬

‭#define‬‭IMAGE_WIDTH‬‭320‬
‭#define‬‭IMAGE_HEIGHT‬‭320‬

‭const‬‭uint8_t DOG[‬‭102400‬‭] = {...}‬
‭const‬‭uint8_t LENNA[‬‭102400‬‭] = {...}‬
‭const‬‭uint8_t UVIC[‬‭102400‬‭] = {...}‬

‭#endif‬‭//IMAGES_H‬

‭This Python program prepares the images for use with our DCT implementation in C. Namely, it resizes‬
‭the images to a consistent size of 320x320 and converts them to grayscale, and finally converts the image‬
‭into a uint8_t array and writes it to a C header file for use with our Loeffler’s algorithm.‬

‭// RUN 2D DCT WITH PROVIDED LOEFFLER FUNC‬
‭void‬‭dct_block‬‭(int32_t block[‬‭8‬‭][‬‭8‬‭],‬‭void‬‭(*loeffler_func)(int32_t‬‭[‬‭8‬‭])) {‬

‭// 1D DCT ON ROWS‬
‭for‬‭(‬‭int‬‭r =‬‭0‬‭; r <‬‭8‬‭; ++r) {‬

‭loeffler_func(block[r]);‬
‭}‬

‭// 1D DCT ON COLS‬
‭for‬‭(‬‭int‬‭c =‬‭0‬‭; c <‬‭8‬‭; ++c) {‬

‭int32_t col[‬‭8‬‭];‬

‭// CREATE COL‬
‭for‬‭(‬‭int‬‭r =‬‭0‬‭; r <‬‭8‬‭; ++r) {‬

‭col[r] = block[r][c];‬
‭}‬

‭loeffler_func(col);‬

‭// WRITE COL BACK‬
‭for‬‭(‬‭int‬‭r =‬‭0‬‭; r <‬‭8‬‭; ++r) {‬

‭block[r][c] = col[r];‬
‭}‬

‭}‬
‭}‬

‭17‬

‭// CSV IS EASY TO COPY AND PASTE FROM STDOUT‬
‭static void‬‭write_csv‬‭(‬‭const‬‭int32_t img[IMAGE_HEIGHT][IMAGE_WIDTH])‬‭{‬

‭for‬‭(‬‭int‬‭r =‬‭0‬‭; r < IMAGE_HEIGHT; ++r) {‬
‭for‬‭(‬‭int‬‭c =‬‭0‬‭; c < IMAGE_WIDTH; ++c) {‬

‭if‬‭(c)‬‭putchar‬‭(‬‭','‬‭);‬
‭printf‬‭(‬‭"%d"‬‭, img[r][c]);‬

‭}‬
‭putchar‬‭(‬‭'‬‭\n‬‭'‬‭);‬

‭}‬
‭}‬

‭void‬‭dct_image‬‭(‬‭const‬‭uint8_t *img,‬‭void‬‭(*loeffler_func)(int32_t‬‭[‬‭8‬‭])) {‬
‭static‬‭int32_t dct_out[IMAGE_HEIGHT][IMAGE_WIDTH];‬

‭for‬‭(‬‭int‬‭r =‬‭0‬‭; r < IMAGE_HEIGHT; r +=‬‭8‬‭)‬
‭for‬‭(‬‭int‬‭c =‬‭0‬‭; c < IMAGE_WIDTH; c +=‬‭8‬‭) {‬

‭int32_t block[‬‭8‬‭][‬‭8‬‭];‬

‭// PREP BLOCK FOR DCT‬
‭for‬‭(‬‭int‬‭i =‬‭0‬‭; i <‬‭8‬‭; ++i)‬

‭for‬‭(‬‭int‬‭j =‬‭0‬‭; j <‬‭8‬‭; ++j)‬
‭block[i][j] = img[(r + i) * IMAGE_WIDTH + (c + j)] << Q_SCALE;‬

‭// 2D DCT‬
‭dct_block‬‭(block, loeffler_func);‬

‭// WRITE BLOCK BACK‬
‭for‬‭(‬‭int‬‭i =‬‭0‬‭; i <‬‭8‬‭; ++i)‬

‭for‬‭(‬‭int‬‭j =‬‭0‬‭; j <‬‭8‬‭; ++j)‬
‭dct_out[r + i][c + j] = ROUND_SHIFT_Q(block[i][j]);‬

‭}‬

‭write_csv‬‭(dct_out);‬
‭}‬

‭int‬‭main‬‭(‬‭void‬‭) {‬
‭dct_image‬‭(LENNA,‬‭loeffler_optimized‬‭);‬
‭return‬‭0‬‭;‬

‭}‬

‭The previous code block corresponds to our image transformer that utilized our implemented‬
‭loeffler_func. This returns the DCT processed image in CSV format as STDOUT. We can copy and paste‬
‭to a CSV file for processing in helper Python scripts. This includes the functions writecsv, dct_block, and‬
‭dct_image. The dct_block function will run a 2D DCT on the 8x8 input block. It will first run DCT on‬
‭each row of the block, then each column, writing the result back into the input block. The dct_image‬
‭function utilizes the dct_block function, splitting the input image into 8x8 blocks, scaling to use the fixed‬
‭point format, applying the dct_block function, rounding results, then utilizing the write_csv to write to an‬
‭output file.‬

‭18‬

‭Improvements‬
‭Further performance improvements could have potentially been obtained if we had spent more time‬
‭optimizing the register handling in the full NEON implementation. We attempted to perform vector‬
‭operations on every single stage and operation of Loeffler’s algorithm, but to our surprise, we found that‬
‭its usage past stage 1 had a negative performance impact. This is likely due to the number of intermediate‬
‭memory instructions required to reorder the data within the NEON registers so that they are positioned‬
‭correctly for the next butterfly operation. Now that we have finished our optimized implementations, with‬
‭hindsight, we believe that more performance could potentially have been extracted had we handled the‬
‭NEON registers with more intentionality.‬

‭Rather than defining only four NEON registers for input low, input high, sums, and diffs respectively, we‬
‭could have leveraged more of the 16 available 128-bit Q registers on an ARMv7 system. For example, we‬
‭could define two independent NEON Q registers per stage, such that stage0_0 and stage0_1 would‬
‭contain the low and high input values, respectively, with sums stored in stage1_0 and diffs in stage1_1.‬

‭Figure 5: Potentially Improved Dataflow for NEON Utilization‬

‭A significant performance detractor was the number of reordering operations needed to move data from‬
‭one NEON register into another with the correct indices for the subsequent operation. A future‬
‭implementation could make more deliberate use of the NEON register file, with a potentially improved‬
‭data flow, as shown in Figure 5. This approach applies a one-index roll to all higher-index lanes after‬
‭stage 1, so that reflector operations are stacked rather than “overlapping”. This would allow the creation‬
‭of a single vector reflector function capable of handling both the C1/C3 reflections in stage 2 and the‬
‭√2C6 operation in stage 1 without requiring structural changes to the function, while also simplifying‬
‭stages 3 and 4. Instead of relying on memory operations and temporary registers to reorder NEON‬
‭register contents, further emphasis could be placed on using vrev64q_s32 and vextq_s32 to flip and‬
‭reorder data directly within the already-populated registers.‬

‭Another small improvement we could have made would be to define the rotator constants at an even‬
‭higher precision within a 64 bit integer, then scale down to match our chosen Q scale. This step would‬
‭allow us to change our Q value without having to manually recompute all constants, while still satisfying‬
‭the integer arithmetic restriction.‬

‭19‬

‭Conclusions‬

‭The results of this project showed the fully implemented DCT using Loeffler’s Algorithm emulated on an‬
‭ARM Cortex-A15 platform. We developed and compared different implementation approaches, namely‬
‭using routines, inline functions, macros, registers, as well as NEON, in multiple areas, culminating in a‬
‭final fully optimized version of the DCT algorithm that performs well. We created a test bench so we‬
‭could compare the different optimizations, and we gained knowledge on the different implementations‬
‭and their respective positives and negatives. We had a speed improvement of 78.2% from our first‬
‭implementation to the final optimized one. Key techniques included NEON SIMD vectorization and‬
‭fixed-point arithmetic. Overall, this project was a valuable learning experience in embedded systems‬
‭performance tuning and the optimization strategies required to make such systems run efficiently.‬

‭References‬
‭[1] “Fundamentals of NEON technology,” Arm Developer, accessed Aug. 9, 2025. [Online]. Available:‬
‭https://developer.arm.com/documentation/den0018/a/Introduction/Fundamentals-of-NEON-technology‬

‭[2] clock_gettime, Linux manual page, section 3. [Online]. Available: linux.die.net/man/3/clock_gettime‬

‭[3] "DCT (Discrete Cosine Transform)", A Security Site. [Online]. Available:‬
‭asecuritysite.com/comms/dct2‬

‭[4] OpenCV Documentation — Operations on arrays, OpenCV Core module, reshape function. [Online].‬
‭Available:‬
‭docs.opencv.org/4.x/d2/de8/group__core__array.html#ga77b168d84e564c50228b69730a227ef2‬

‭[5] scipy.fftpack.dct, SciPy v1.16.1 Manual. [Online]. Available:‬
‭docs.scipy.org/doc/scipy/reference/generated/scipy.fftpack.dct.html‬

‭20‬

