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Abstract

In this project, we set out to implement the Discrete Cosine Transform (DCT) algorithm in an embedded
systems context. To complete this, we would implement the DCT using Loeffler’s Algorithm and further
improve it by applying software optimization techniques that are relevant for the given algorithm. To test
the implementation that we developed, we created a test bench that will outline the performance of each
iteration of the algorithm, each of which used a different type of optimization technique, followed by a
fully optimized final version. We had success in exploring different optimizations that could be used for
the DCT algorithm and found large improvements when using NEON.

Introduction

Digital Signal Processing (DSP) is a key tool in modern computing, used in a varying range of
applications such as communication and multimedia. The Discrete Cosine Transform (DCT) is one such
DSP tool that is widely used as a pre-processing step in multimedia compression. Although it has the
potential to be quite powerful, specific implementations vary in efficiency given the large amount of
computation required. As embedded systems get smaller, the need for more efficient implementations of
algorithms is crucial. This applies to products and services such as camera sensors, streaming, and [oT
devices.

The DCT at its core is a mathematical technique used to transform a signal from the time domain to the
frequency domain, which is typically then used in tandem with compression techniques. The DCT is
typically used in JPEG image processing, usually processing 8x8 blocks of data at a time. At its simplest
form, the DCT is an extremely expensive operation to perform and given that there is a large demand for
the DCT to be used in small systems, there have been a plethora of different implementations that attempt
to tackle the efficiency of this algorithm.

Although there are multiple versions of the DCT algorithm, Loeffler's Algorithm is a popular
implementation in both software and hardware solutions given that the number of calculations have been
reduced significantly (namely 64 multiplications to 11) while maintaining consistency. Given this increase
in efficiency, it is incredibly useful when working with embedded systems given the need for this
reduction in computational load.

This project focuses on implementing the 8x8 DCT using Loeffler’s algorithm on an ARM Cortex-A15
processor, emulated via QEMU. The ARM Cortex-A1S5 is a high-performance member of the ARMv7-A
architecture family, supporting SIMD instructions through the NEON engine, which can be leveraged to
further accelerate the DCT. The choice of an emulated environment allows controlled performance testing
while preserving the characteristics of an embedded ARM system.



Objectives

The objectives of this project are to:
1. Implementation: Create a working implementation of the 8x8 DCT using Loeffler’s algorithm in
C, targeted for an ARM system.
2. Optimization: Investigate compiler-level optimizations, algorithmic refinements, and potential
SIMD acceleration using NEON instructions.
3. Performance Analysis: Measure the performance of the different DCT implementations we have
implemented and experimented with, as well as compare and contrast the results.

Specifications

e Processor: ARM Cortex-A15 (emulated via QEMU virt-2.11 machine type)
o Architecture: ARMv7-A (32-bit)
e Compiler: gcc 8.2.1

Performance Achieved

The performance achieved for the fully optimized version of our Loeffler’s DCT implementation was
quite fast in comparison to our other less favourable implementations, with a speed increase of 78.2%.

Contributions

Implemented Loeffler’s algorithm for the DCT in C.

Optimized for the ARM Cortex-A15 architecture using NEON SIMD to enable parallel floating
point operations.

Applied compiler optimization flags.

Reduced memory overhead by storing intermediate results in registers.

Created a test bench to test the effectiveness of our implementations.



Report Organization

The following sections discuss the function of each section in the report as well as their purpose.

Abstract

Summarize the approach, process, functionality, successes, and shortcomings of the project as a whole.

Introduction

Introduce the project and what we want to achieve, outline the specifications, the performance achieved,
the contributions, as well as outlining the different sections of the report.

Background

Discuss the problem that this project is tasked to complete, as well as any information that is required to
know before understanding the problem that we are trying to solve.

Algorithm Design

Discuss the chosen algorithm design, what were the decisions for critical portions of the algorithm such as
how we are dealing with values, registers, variables, and what bit width we chose.

C Code and Optimization

Outline snippets of the C code that was developed, and highlight the optimizations used to improve the
code performance.

Compilation and Assembly

Describe the process of compiling the DCT implementation for the ARMv7-A architecture, including the
toolchain used, compiler flags, generation of assembly output, and how the build was tailored for
execution on the QEMU-emulated Cortex-A15 platform.

Results

Enumerate the performance of the developed solution, discuss the overall results of the project.

Improvements

Discuss possible improvements that could be made to the developed solution given the current
implementation.

Conclusions

Draw conclusions from the project.



Background

Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) is a mathematical technique used to transform a signal or image
from its spatial or time domain to the frequency domain which aids in data compression techniques. The
DCT is equivalent to the Discrete Fourier Transform (DFT) of real and even functions and it differs from
the DFT’s use of complex numbers by using only real numbers, making it simpler. The DCT has an
energy compaction property which is very effective. It outlines that most of the signal energy is
concentrated in the few low frequency coefficients, which makes the DCT very effective in calculation,
since few DCT coefficients can represent an entire block of pixels.

It is a pivotal technique in signal processing, data compression, mostly used in image and video
compression for use in formats such as JPEG for images and MPEG for video. N by N blocks of data are
processed with a common choice for N is 8. As multimedia devices get smaller, the need for optimizing
this technique is pivotal in how people will consume multimedia, as it will need to have increased
performance on smaller embedded machines.

Mathematical Background

There are a few versions of the DCT, but in its most simple form we have the 1D DCT. The 1D DCT for
inputs x(i) and outputs X(u) is defined as:
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Figure 1: 1D DCT Equation.

The 2D DCT, which is the version used in image compression, can be described as applying the 1D DCT
to each row of the image matrix, followed by applying the 1D DCT to each column of the image matrix
and can be defined as:
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Figure 2: 2D DCT Equation.



Computational Challenges of DCT

This naive implementation of the DCT is computationally expensive given that this approach would yield
a time complexity of O(N?) for an N by N matrix. Since this would also involve many floating point
multiplications (which are quite expensive to calculate) the cost of the naive implementation of the DCT
would be enormous and would not be an effective solution on an embedded system.

Loeffler’s Algorithm

To address the issue of this high computational need, as well as power draw, there have been several
implementations of the DCT that try to tackle these issues, making an efficient version of the DCT that
can be utilized on embedded systems and smaller devices. Loeffler’s Algorithm is one such algorithm that
is a fast, factorized version of the 8-point DCT. It was developed in 1989 by Loeftler, Ligtenberg, and
Moschytz. It minimizes the number of multiplications needed, making it ideal for systems where
computation cost and power draw are a concern. It completes a theoretical minimum number of
multiplications at 11 and 29 additions for an 8-point DCT. This algorithm was the basis for many JPEG
image encoders, both in software and hardware.

The algorithm is structured into stages based on the transformation of an 8x8 input matrix into its
corresponding frequency coefficients. These stages include:

e Reflectors: Combine symmetric input elements using addition and subtraction, forming the
butterfly operations that reduce computational complexity.

e Rotators: Perform approximate cosine-based multiplications using fixed or reduced-precision
constants, enabling efficient implementation on hardware with limited floating-point
performance.

e Reordering: Arrange the outputs from the previous stages into their correct positions in the final
DCT coefticient matrix.

A diagram of Loeffler’s Algorithm can be seen below:
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Figure 3: Diagram of Loeffler s Algorithm and Related Equations.



Embedded System Context

Since we are utilizing the Cortex-A15, which is a high-performance ARM processor based on the
ARMvV7-A 32-bit architecture, we can utilize NEON instructions, which allow for simultaneous
operations on multiple data elements, further improving this implementation. NEON is quite useful
especially in an embedded systems context, given that we can perform vectorized addition, subtraction,
and multiplication efficiently, which will aid in improving the performance of the DCT in an embedded
world.

Algorithm Design

For all intermediate values, we chose int32_t to retain sufficient precision while still using int64 t to
temporarily hold products, before shifting to restore scale. With the largest NEON vector type (q
registers), each register holds 4 lanes of 32-bit integers (int32x4 t), which allows us to vectorize the entire
first stage of Loeffler’s operation effectively. Using int64_t vectors would halve our vector width and
provide more fractional precision than required, and int16_t would underutilize the available bit width
and would provide more vectorized lanes than needed for the sum and diff operations.

To keep the implementation compliant with the integer-only restriction, we define a global fixed-point
scale. To pick a scale that maximizes use of the 32-bit width, we first determine the maximum possible
value anywhere across the Loeffler’s data flow.

For an 8-bit input image, the worst case is an all-white block. In the first 1D pass, the highest term is the
sum of the 8 inputs: 8 x 255 = 2040. After the second pass (to form the 2D DCT), the highest term sums
eight of that value again, resulting in a maximum of 16320.

Therefore, the highest fixed-point scale that still fits within a signed 32-bit integer is Q17, since 16320 <<
17 = 2139095040, which is below the max representable signed value of 2147483647.

The input to our Loeffler implementation is an array of eight int32_t values pre-shifted to our global Q17
scale. We do this outside the Loeffler routine so the 2D pass does not shift and unshift twice. We left-shift
the 8x8 input block once and rescale the output once at the end. Input images are stored as 1D vectors in
images.h. We gather each 8x8 block with a sliding window and write the DCT result back to its
corresponding location in a 320%320 output array.

Within the rotators, we multiply the operands by fractional constants. To satisfy the integer-only
constraint, these constants are precomputed, scaled to Q17, rounded to their nearest integer, and stored in
the header file. We define a ROUND_SHIFT Q macro that adds 1 << 16 before shifting right by our
global Q17 scale to perform round-to-nearest. This normalizes our multiplication products back to Q17
and reverts our finalized DCT transformed values back to the integer scale.



To manage registers effectively, we use NEON in Stage 1 to compute all sums and differences in two
vector operations. We load the low four inputs into one q register and the high four into another. We then
reverse the entire high vector by flipping pairs using vrev64q_s32 and rotating by two lanes with
vextq_s32. Reversing the high vector lets us compute sums and diffs by aligned indices. Compiled
assembly code is shown in the following block to demonstrate the use of NEON Q registers, along with
the flip and rotate operations required to reverse lane order for the butterfly operations.

Load low bits into gl0
Load hi bits into g8

Reverse to align indice

align indices

store in g9
order
order
rotator constants
diffs into GPRs
diffs int

storing ro
storing rotato
storing rotator

.

c sums - store in g8
calculated diffs into GPRs

From our empirical results, we only gained performance by vectorizing Stage 1. Beyond that point, we
observed a significant performance hit, likely from the extra memory traffic and lane rearrangements
needed for each subsequent operation. For the remaining stages, we operate in scalars, assigning each
value to a variable that describes its stage and lane (e.g. s1 7). While we define more variable names
than necessary and include many redundant renaming operations, the code is much easier to work with
when following the provided dataflow diagram. Analysis of the resulting assembly code confirms that the
compiler effectively handles register allocation and eliminates redundant renames, so there is no
performance penalty. For example, while R2 contains the result of the stage 3 lane 0 sum, the compiler
skips the redundant s4 0 =s3 0 step and writes R2 directly to the output array’s v[0], as highlighted in
red.




C Code and Optimization

This section will outline snippets of the C code that were used in the final optimized version of our
version of Loeffler's algorithm implemented in C. It will outline the helper functions, then the full
Loeffler DCT function stage by stage, along with the corresponding diagram of that stage.

The versions of Loeffler’s algorithm that were developed for this project are as follows:

Routine: Implemented using routines only.

Inline: Implemented using inline functions.

Macro: Implemented using macros.

Register: Implemented leveraging registers.

NeonS1: Using NEON for Stage 1 in Loeffler’s only.

NeonReflect: Using NEON for the reflectors in all stages.

NeonFull: Using NEON for reflectors and rotators in all stages.

Optimized: A fully complete version, using the best optimizations from all other versions.

Let’s walk through the final optimized version and highlight some important pieces in the code.
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The ROUND_ SHIFT Q macro takes x (a 64-bit integer) in Q_SCALE fixed-point format and converts it
back to a signed 32-bit integer with rounding. It first adds a rounding bias of 1 << (Q_SCALE - 1), which
ensures round-to-nearest behaviour when the value is right-shifted. It then performs an arithmetic right
shift by Q SCALE bits to remove the fractional portion, and finally casts the result to int32 t.



The second helper function is the rotator macro that is used frequently in the Loeffler function. This
rotator takes two input values, a and b, and utilizes the round and shift macro. The parameters C and S are
the cosine and sine rotation values, stored as precomputed and scaled constants. Q_SCALE is the number
of bits shifted for the fixed-point representation that we want to achieve (17). In this macro, we copy a
and b into temporary int64 t variables so that we do not overflow. The resulting values a and b are
calculated using the provided C and S constants, then cast to int32 t.
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This code snippet represents Stage 1 of the Loeffler DCT algorithm. First, we load the first 4 values into
NEON registers lo and hi, then we take the reverse of hi so that we can align the data pairs for use in the
reflector operations. Once we have the data prepared, we will calculate the sums and differences, which
are in the reflector stage of the operation. After the calculations have been completed, we reverse the diff
order so that we can line up the data for the next stages in the algorithm, as well as extract the results of
each value into int32_t. Notice that we are optimizing these operations by use of NEON registers, namely:
1. vldq s32: Vector load for 128-bit int and 32-bit signed integers
a. Loads 4 consecutive 32-bit ints from memory into a NEON register
2. vrev64q s32: Vector reverse with 64-bit elements and 32-bit signed integers.
a. Reverses the order of pairs of 2 32-bit integers.
3. vextq_s32: Vector extract with 32-bit signed integers.
a. Extracted a shifted vector by concatenating two vectors that select a continuous slice
starting from an offset.
4. wvgetq lane s32: Vector get lane 32-bit signed integer.
a. Extract the single 32-bit int at a specified index.
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This code snippet represents Stage 2 of the Loeffler DCT algorithm. For the even (top) values, we
compute the reflector operations as scalars and store them as new variables for use later in the algorithm.
Odd values, however, will be redundantly renamed for clarity, then rotated using our defined macro.

This represents Stage 3 in the Loeffler DCT algorithm. The top two values are reflected, the middle
values are rotated using the corresponding floating point constants, R2C6 and R2S6, for this stage. Then
finally, the odd parts are reflected.
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Stage 4

int327t s4d

4

- - — 5
" 6
&y 7

This is Stage 4; we have the even values passing through to be used in the final step. The odd values are
being reflected and scaled, where s4 4 and s4 7 are being reflected, and s4 5 and s4_6 are being
multiplied by the constant R2, then rounded and right shifted using the macro ROUND SHIFT Q. Notice
that we cast to int64 t to ensure that there are no overflow issues.

even

odd

|
b b B Bt B Bt e

This last step is augmenting the final order of the lanes to correspond with even and odd outputs, and
storing them in our resulting vector.
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Compilation and Assembly

Compilation and assembly were done using CMAKE. The file as well as specifications can be seen
below.

cmake minimum required (VERSION
project (DCT C)

set (CMAKE C

_optimized

fler inline.c
loeffler macro.c

loeffler routine.c
loeffler neon.c

loeffler register.c

set source files properties(loeffler neon.c loeffler optimized.c
RTIES COMPILE FLAGS "-march=armv/-a -mfpu=neon-vfpvi4

add executable (DCT main.c in

target link libraries (DCT PRIVATE dct)

This was developed in JetBrains’ CLion IDE with a remote toolchain that builds on root@localhost:2222

Specifications:
e GNU Make 4.2.1
e gcc version 8.2.1 20180801 (Red Hat 8.2.1-2) (GCC)

Flags:
-march=armv7-a: Specify the target architecture.

e -mfpu=neon-vipv4: Specifies the Floating Point Unit (FPU) and SIMD extensions to use.
e -mfloat-abi=hard: Specifies the floating-point calling convention to use hard floating point ABI.
e -03: Optimization level 3, which enables aggressive compiler optimizations for speed.

Build Command:
/usr/bin/cmake --build /tmp/tmp.FtjpSpoh6g/DCT/cmake-build-debug-seng-vm --target DCT -- -j 30
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Results

This section outlines the test bench that was created for the project, as well as any helper functions used
for result visualization.

static double bench loop(void (*loeffler function) (int32 t [8]), int iterations) ({
static const intlé6 t input raw([8] = { ’ ’ ’ ’ ’ ’ ’ bi
int32 t v[8], input[8];

for (int j = 0; j < 8; ++3j)
input([j] = (int32 t) input raw[j] << Q SCALE;

struct timespec t0, tl1;
clock gettime (CLOCK THREAD CPUTIME ID, &tO);
(int 1 = 0; 1 < iterations; ++1i) {
for (int j = 0;

j <
v([(j] = input[j]
loeffler function (v

;i tt3)

)

clock gettime (CLOCK THREAD CPUTIME ID, &tl);

return ((tl.tv _sec - t0.tv sec) * + (tl.tv_nsec - t0.tv nsec)) / iterations;

static void benchmark (int runs, int iterations) {
printf ("Run,Routine, Inline,Macro, Re er, Neon
for (unsigned run = ; run < runs; run+t+)

" "

printf ("%u", run);
printf .2 bench loop(loeffler routine, iterations));
printf .2f bencl oop(loeffler inline, iterations));
printf .2f be > (loeffler macro, iterations));
ler register, iterations));
neon sl, iterations));
B 1 reflect, iterations));
~neon_ full, iterations));
_optimized, iterations));
putchar ('\n") ;
fflush (stdout) ;

int main(void) {

benchmark (

return




This code snippet outlines the bench_loop function that was used to benchmark the runtime (in
nanoseconds) of the Loeffler implementation that was used. For test purposes, we have a dummy 8-value
array that will be used as input, as well as the number of iterations to be run to calculate an average run
time. For benchmarking purposes, we first scale the raw input data to our Q17 scale and into int32 t
values for use in fixed-point arithmetic. We get the CPU thread time using clock gettime, then begin
looping and applying the chosen Loeffler algorithm. To finish, we get the CPU thread time at the end of
the loop of iterations, measure the total time taken divided by the number of iterations, and return that
value. We used CLOCK_THREAD CPUTIME ID rather than CLOCK MONOTONIC as it was far
more stable and less variable on the current load of the host machine.

The benchmark function just runs bench_loop with every implementation of Loeffler’s and prints it to

stdout. In our case, we are benchmarking 100 runs with 1,000,000 iterations each. The results of a test
bench were:

CPUTIME (ns) per 1D DCT

400

300

200

Avg (ns)

100

Figure 4: Bar Chart of the Test Bench Results

Routine Inline Macro = Register NeonS1 NeonReflect NeonFull = Optimized
Avg (ns) 373.5983 254.3293 234.8328 174.1445 85.3348 91.7535 121.6252  81.4246

Table 1: Test Bench Results in Nanoseconds

As we can see, the fully optimized implementation of Loeffler’s DCT had the fastest result time, whereas
the routine implementation had the slowest. The inline, macro, and register implementations were a good
initial start to optimizing the implementation, but when incorporating NEON into our implementations,
that's when we saw the most improvement to the running time of the implementations.
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To visualize our final DCT implementation, test photos were obtained, and processing was completed:

Original

Greyscale and Scaled

DCT Log Visualized

CV2 Reverted

University
of Victoria

University
of Victoria

University
of Victoria

Table 2:

Original Photo, Pre-Processed, DCT Applied, Reverted.

These are the results for 3 input test images, where the first column represents the untouched original
image, the second column is the grayscale and scaled image ready for DCT, the third column is a

log-scaled visualization of the result of running the optimized 2D DCT implementation, then finally, the

reverted image that effectively reconstructs the preprocessed image used as input. The processing of these
visualizations will be discussed below.
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from pathlib import Path

from PIL import Image i IMAGES H
IMAGES H

src = Path("./lenna.png")

name = src.stem i IMAGE WIDTH

img = Image.open (src) i IMAGE HEIGHT

const uint8 t DOG [
img.resize (( )) .convert ("L") const uint8 t LENNA [
const uint8 t UVIC]

#endif
with open (f"{name}.h", "w") as f:
f.write(f"const uint8 t "
f"{name.upper ()} [{w * h}] = {{\n")
for i, px in enumerate (img.getdata(),

f.write (£f" {px},")

if 1 % == 0:
f.write("\n")

This Python program prepares the images for use with our DCT implementation in C. Namely, it resizes
the images to a consistent size of 320x320 and converts them to grayscale, and finally converts the image
into a uint8_t array and writes it to a C header file for use with our Loeffler’s algorithm.

volid dct block(int32 t block[8][8], void (*loeffler func) (int32 t [8])) {

for (int r = 0; r < 8; ++r) {
loeffler func(block[r]);

(int ¢ = 0; ¢ < 8; ++c) {
int32 t col[8];

; r < ; ++r) |
block[r] [c];

loeffler func(col);

for (int r = 0; r < 8; ++r) {
block[r][c] = collrl];




01d S S g inti’Zit img[IMf’—‘sGEiHEIGHT] [IMAGE WIDTH]) {
(int r ; ¥ < GE HEIGHT; ++r) {
for (int c = ;7 ¢ < IMAGE WIDTH; ++c) {
if (c) putchar(','):
printf ("$d", img[r][c]):;
}

putchar('\n'");

onst uint8 t *img, void (*loeffler func) (int32 t [8])) {
static int32 t dct out [IMAGE HEIGHT] [IMAGE WIDTH] ;

< IMAGE HEIGHT; r += 8)
< IMAGE WIDTH; c +=

(int J
block[

i][3] img [ (T i) * IMAGE WIDTH + (c

int main (void
dct image (LENNA,

return

The previous code block corresponds to our image transformer that utilized our implemented

loeffler _func. This returns the DCT processed image in CSV format as STDOUT. We can copy and paste
to a CSV file for processing in helper Python scripts. This includes the functions writecsv, dct block, and
dct_image. The dct_block function will run a 2D DCT on the 8x8 input block. It will first run DCT on
each row of the block, then each column, writing the result back into the input block. The dct_image
function utilizes the dct_block function, splitting the input image into 8x8 blocks, scaling to use the fixed
point format, applying the dct_block function, rounding results, then utilizing the write csv to write to an
output file.
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Improvements

Further performance improvements could have potentially been obtained if we had spent more time
optimizing the register handling in the full NEON implementation. We attempted to perform vector
operations on every single stage and operation of Loeffler’s algorithm, but to our surprise, we found that
its usage past stage 1 had a negative performance impact. This is likely due to the number of intermediate
memory instructions required to reorder the data within the NEON registers so that they are positioned
correctly for the next butterfly operation. Now that we have finished our optimized implementations, with
hindsight, we believe that more performance could potentially have been extracted had we handled the
NEON registers with more intentionality.

Rather than defining only four NEON registers for input low, input high, sums, and diffs respectively, we
could have leveraged more of the 16 available 128-bit Q registers on an ARMv7 system. For example, we
could define two independent NEON Q registers per stage, such that stage0 0 and stage0 1 would
contain the low and high input values, respectively, with sums stored in stagel 0 and diffs in stagel 1.

; Stage 2 ; Stage 3 ; Stage 4
s1 _r—@— c3 o~ . . X(1)
s1_4—§— 0" —————— X(7)
: —_— : :
$15—— et o—t (XY X(3)
1.6 0 —————— . (<) X(5)
N : :

Figure 5: Potentially Improved Dataflow for NEON Utilization

A significant performance detractor was the number of reordering operations needed to move data from
one NEON register into another with the correct indices for the subsequent operation. A future
implementation could make more deliberate use of the NEON register file, with a potentially improved
data flow, as shown in Figure 5. This approach applies a one-index roll to all higher-index lanes after
stage 1, so that reflector operations are stacked rather than “overlapping”. This would allow the creation
of a single vector reflector function capable of handling both the C1/C3 reflections in stage 2 and the
\2C6 operation in stage 1 without requiring structural changes to the function, while also simplifying
stages 3 and 4. Instead of relying on memory operations and temporary registers to reorder NEON
register contents, further emphasis could be placed on using vrev64q s32 and vextq s32 to flip and
reorder data directly within the already-populated registers.

Another small improvement we could have made would be to define the rotator constants at an even
higher precision within a 64 bit integer, then scale down to match our chosen Q scale. This step would
allow us to change our Q value without having to manually recompute all constants, while still satisfying
the integer arithmetic restriction.
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Conclusions

The results of this project showed the fully implemented DCT using Loeffler’s Algorithm emulated on an
ARM Cortex-A15 platform. We developed and compared different implementation approaches, namely
using routines, inline functions, macros, registers, as well as NEON, in multiple areas, culminating in a
final fully optimized version of the DCT algorithm that performs well. We created a test bench so we
could compare the different optimizations, and we gained knowledge on the different implementations
and their respective positives and negatives. We had a speed improvement of 78.2% from our first
implementation to the final optimized one. Key techniques included NEON SIMD vectorization and
fixed-point arithmetic. Overall, this project was a valuable learning experience in embedded systems
performance tuning and the optimization strategies required to make such systems run efficiently.
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