DinoPatch: Patch-Based Anomaly
Detection Using DINOv2

Jairus Abad
Dept. of Computer Engineering University of Victoria
Victoria, Canada

ABSTRACT

This paper presents DinoPatch — an anomaly detection framework
that leverages META Al Research’s DINOv2's Vision Transformer
combined with a PatchCore-inspired memory bank. Our method
effectively addresses both texture-based (pasta) and shape-based
(screw) anomalies by normalizing our inputs. PCA-informed
alignment and computing FEuclidean distances between image
patches and their nearest neighbour in a memory bank effectively
classifies anomalous and nominal images. Qualitative anomaly maps
and quantitative metrics demonstrate excellent performance,
achieving an accuracy, precision, recall, Fl-score and AUROC of
100%. Our approach highlights the viability of ViT-based
embeddings coupled with spatially aware memory banks for robust
anomaly detection.
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I. INTRODUCTION

The primary goal of this project was to develop a computer vision
model that can classify whether an image is anomalous, using two
distinct datasets: one containing images of pasta, and the other
featuring a screw with a washer, as shown in Figure 1. The pasta set
is a texture-based anomaly detection problem, whereas the washer
and screw set are shape-based anomalies. Texture-based anomalies
involve subtle, local irregularities like discolorations or a change in
pattern. Conversely, shape-based anomalies involve geometric
deviations such as the washer being too far from the screw head. The
significant challenge addressed by this project is developing a robust
model that can identify anomalies across fundamentally different
problems.
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Figure 1: Nominal Images (left) and Anomalous Images (right)
To address these two problems, several well-established techniques
from Computer Vision and Pattern Recognition were used; however,
the most significant contributor was Meta Al Research’s vision
transformer model, DINOv2 [1]. This powerful self-supervised
feature extractor was able to pick up on subtle texture and
shape-based features in distinct patches of our pre-processed images.
By calculating the Euclidean distance between each patch and
patches at the same spatial location within our memory bank, we
generate a heatmap highlighting anomalous regions.
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Our method demonstrates effectiveness through qualitative
visualization of anomaly maps and quantitative evaluation metrics
such as AUROC scores, which confirms its potential for versatile,
accurate anomaly detection across different problems.

II. LITERATURE REVIEW
A. Literature Review of Anomaly DINO

Similarly to our approach, AnomalyDINO leverages DINOv2 as a
backbone. The paper proposes a vision-only approach for one and
few-shot anomaly detection [2]. Anomalous images are found by
utilizing a memory bank M where M contains the DINOv2 extracted
features from patches of size 14x14 from a set of nominal training
images. During the testing stage, the patch features of evaluation
images are extracted and checked for similarity to the features stored

in M by calculating the cosine distance d described by [2, Eq. 1] as
opposed to the Euclidean distance utilized in this report.
— _ <xy>
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The equation was iteratively run at each spatial location in M, and the
minimum distance d was evaluated where x is the test patch that
contains the features in the evaluation image and y is the reference
patch contained in the memory bank. Anomaly DINO then

implements the nearest neighbour algorithm described by dyy(x; M)
[2, Eq. 2].

dyn(x;M) = min(x, ») 2
The patch distances are then aggregated and scored as described by
[2, Eq. 3], where S(x) is the score of the test image and ¢ takes the
mean average of the top 1% largest patch differences.

S(x) = q({dux M), ..., dinxsM)}) ©)
The feature patch x is found in the test feature space, and y is the
reference feature patch in the memory bank M. For post-processing
and localization of potential anomalies, the 14x14 anomaly map from
DINOv2 was upsampled back to the original image resolution of 448
or 672 using bilinear interpolation. This results in a dense anomaly
map with rough edges. These sharp changes in intensities were then
rectified by applying Gaussian smoothing with ¢ = 4 [2]. Enriching
the memory bank to increase training data variability was done via
scaling and rotations. To reduce inference time and effective RAM

usage, full-shot methods were utilized to reduce the size of M. A
few-shot scenario uses a small number of domain-specific patches of
normal images to populate the memory bank as opposed to using
every image in the normal set.

For more robust results, preprocessing using masking was
implemented by also using DINOvV2 to reduce false-positive results.
Principal Component Analysis (PCA) on the patch features was used
to produce the mask. The first PCA component of the patch was
thresholded but was supervised since failure cases occurred when the
objects of interest accounted for over 50% of the patches [2]. The
application of these masks can be seen in [2, Fig. 2] below.


https://colab.research.google.com/drive/12ghImE8IA1DlnfT4H3bph1YCxx0I2AcG?usp=sharing

]

= [Jee
= [1a

l
|

= (g
= [0
= [ge

Figure 2: Masked Objects of Interest from MVTec-AD

After optimizing the memory bank by testing multiple shots, it was
found that 16 shots (16 nominal images in the memory bank) with a
resolution of 672 performed the best. AnomalyDINO (672) at
16-shots was able to yield impressive AUROC scores of 98.4+0.1%
and 97.5+0.0% for Classification and Segmentation, respectively.

AnomalyDINO performs better than other modern zero and few-shot
Anomaly Detection methods, such as SPADE, PaDiM, PatchCore and
APRIL-GAN, to name a few, since it uses DINOv2’s powerful
self-supervised Vision Transformer (ViT) features (Section III, C).
Furthermore, AnomalyDINO is a training-free method as opposed to
APRIL-GAN and AnomalyCLIP.

AnomalyDINO was also able to optimally bound the memory bank to
a limited set of images to reduce RAM usage and inference time. Our
proposed solution does not apply few-shot methods since our training
set was already quite limited. AnomalyDINO is more robust with
few-shot scenarios or with limited training data since each evaluation
patch is compared against every patch in the memory bank rather
than just patches at the same spatial location. This works well for
texture-based anomalies but can struggle with shape-based anomalies
where the texture of the anomalous region is still valid; for example,
in the cases of the missing washer or the misplaced washer within our
anomalous screws dataset.

B. Literature Review of Patch Core

Patchcore leverages spatial context and retains spatial information in
the memory bank, which makes it better for catching shape-based
anomalies. This paper aims to detect anomalies by extracting
patch-level embeddings using pre-trained Convolutional Neural
Network (CNN) backbones (eg. WideResNet-50) instead of ViTs
such as DINOv2 [3]. These patches populate a memory bank M,
efficiently capturing what is considered ‘“nominal” from feature
embeddings.

During evaluation, anomalies are identified by calculating the
Euclidean distances from test patches to their nearest neighbours in
the memory bank. Notably, Patchcore enhances anomaly localization
by aggregating the nearest-neighbour (NN) distances within its local
spatial neighbourhoods as opposed to globally across all patches like
AnomalyDINO. This spatial sensitivity allows it to excel at detecting
shape-based anomalies, such as misaligned or structurally defective
objects, compared to purely texture-focused approaches.

Patchcore and DinoPatch are similar in their fundamental approach in
detecting anomalies by utilizing a memory bank, and both use
nearest-neighbor patch comparisons. These two approaches differ in
how image features are extracted — DinoPatch uses a ViT, and
Patchcore uses a CNN. In addition to feature extraction, our problem
scope demands explicit preprocessing steps such as PCA-based
alignment (Section III. B.) for consistent orientation and scale since,
unlike Patchcore, our datasets lacked spatial consistency.
Additionally, our approach avoided Patchcore’s neighborhood
aggregation strategy, which could be implemented in the future, as
highlighted in Section IV C.

1II. IMPLEMENTED APPROACH
A. Data Set Expansion

Due to our implementation’s rotation, scale, and position invariant
nature, standard image augmentations such as rotations, crops and
translations are simply undone by our preprocessing step (Section
[II.B). If these images are added to our memory bank after the
augmentations are reversed, they will only increase the RAM usage
and redundant information.

Figure 3: Original (left) and Mirrored (right) Preprocessed Training
Images

Image mirror augmentations, however, introduce an effectively
unseen image to our memory bank. After correcting the perspective
with our preprocess step, the features at a patch location will be
different between the original and mirrored, as shown in Figure 3
above.

B. Pre-Processing

In the first stage of our pre-processing step, we convert the input
image to grayscale and apply a Gaussian blur to reduce noise. Note
that o was automatically calculated by OpenCV based on the Kernel
Size [3]. We then extract edges using OpenCV’s Canny Edge
Detector function cv2.Canny(), followed by contour detection with
cv2.findContours(). The contour points are then stacked and passed to
sklearn.decomposition.PCA to compute the principal components of
the object(s) [3]. Performing PCA analysis allows us to extract
parameters that help rotate and scale the images such that they are of
consistent orientation and scale before feature extraction with
DINOv2.

Algorithm 1: Principal Component Extraction

1: Input: A D-dimensional training set X = {x,x2,..., xn} and the new (lower)
dimensionality d (with d < D).
2: Compute the mean

X =

=z~

N
et
i=1

3: Compute the covariance matrix

=

1 = o\T
Cov(x) = v Z(xi —x)(x; —x)" .

i=1

4: Find the spectral decomposition of Cov(x), obtaining the eigenvectors
E1néa ity & p and their corresponding eigenvalues Ay, A,, ..., A p. Note that the
eigenvalues are sorted, such that A} > Ay > -+~ > Ap > 0.

PCA is a linear dimensionality reduction technique and a linear
feature extraction method [6]. The features are extracted by using
OpenCV’s PCA decomposition function but can also be implemented
using [6, Algo. 1] below, where x is the Canny Edges of our training
set and N is the number of Edges detected.



The relevant output for our preprocessing method is the explained
variance, which can be extracted from the Covariance Matrix’s
eigenvector and eigenvalue pair. The eigenvector with the highest
eigenvalue is the first principal component and defines the direction
of the maximum variance in the data, and the eigenvalue defines how
much variance is captured along that direction.

From these principal components, we extract the mean position
(estimated center), the orientation angle of the primary axis (from the
eigenvector) and a scale proportional to the square root of the largest
explained variance (from the eigenvalue).

Plotting these extracted features, as shown in Figure 4, allows us to
visualize how accurately we are determining a consistent centerpoint,
angle, and scale across a sample of images.

Figure 4: Plotting the extracted PCA info

With the information extracted during our PCA step, we then perform
a series of transformations to our input image so that the object(s) are
consistently positioned, scaled, and oriented within the image
viewport, such that the memory bank can expect features in specific
locations across various images.

Before any transformations are applied, we first pad the image by
100% using cv2.BORDER_WRAP. This ensures that when we
transform and crop the image, we don't introduce any artificial black
borders. Using wrap padding effectively "tiles" the image, so edge
regions are filled with wrapped image content rather than a black fill.
This prevents our feature extractor from encountering unnatural black
regions and helps maintain the quality and relevance of features
stored in the memory bank.

While adding this padding is important to efficiently fill out our
memory bank, we don't want artificially padded regions to influence
the anomaly score during image evaluation. Therefore, in the
preprocessing step, we duplicate all transformations onto a
corresponding mask image. This allows us to isolate only organic
regions of the image during scoring.

C. Main Feature Extraction

Using a feature extractor allows us to represent image patches as
high-dimensional feature embeddings that capture texture and shape
information. This leads to a more robust and semantically meaningful
representation of each patch compared to raw pixel values alone.

To do this feature extraction, rather than attempt to train our own
Convolutional Neural Network (CNN) from our very limited input
datasets, we opted to use Meta Al Research’s DINOv2 ViT model,
which has a strong semantic understanding of various textures and
shapes with no additional fine-tuning.

DINOV2 transforms image patches of shape (14,14,3) into a (1, 768)
vector embedding, resulting in an image feature matrix of
(16,16,768). However, to obtain a higher-resolution feature matrix,
we upscale the input image by a factor of 3.5, such that each DINOv2
patch effectively captures patches of shape (4,4,3), yielding a
resulting feature matrix of (56,56,768).

Figure 5: KNN grouped visualization of extracted DINOv2 feature
matrix

While our preprocessing step (Section II1.B) effectively aligns the
object’s principal axis to the horizontal, PCA alone cannot determine
the object’s polarity. To address this, we sample the extracted feature
embeddings along the primary axis. We construct a reference
orientation vector by subtracting the first half of the axis’s
embeddings from the second half.

This reference orientation vector is then used to align the polarity of
future feature matrices. For each new image, we extract an
orientation vector along the same axis and compute its dot product
with the orientation reference. If the result is negative, indicating
opposite polarity, we horizontally flip the feature matrix to ensure
consistent alignment.

D. Memory Bank

Iterating through each image in the training dataset, we apply the
preprocessing augmentations to normalize the object’s scale, position,
and orientation. The preprocessed image is then passed into our
feature extractor along with a reference orientation vector to ensure
consistent polarity. All resulting feature matrices are stacked to form
a feature memory bank. Each memory bank must be loaded into
RAM to perform the nearest neighbour search required for anomaly
map construction. Due to the relatively small size of our training
dataset, explicit memory management was not necessary for our
implementation. However, if a larger dataset was provided and
memory management was required, we discuss strategies and
considerations in detail in Section IV.C.

E. Anomaly Map Construction

During evaluation, each image is passed through the same
preprocessing and feature extraction pipeline used to construct the
memory bank. The image’s orientation vector is compared to the
reference orientation vector to correct for polarity; if a flip is
required, the feature matrix and padding mask are flipped
accordingly.

We then iterate through each spatial location in the evaluation
image’s feature matrix, computing the Euclidean distance (described
by Eq. 4 below) between its embedding and each of the
corresponding embeddings in the memory bank.

N
dxy) = [ O, - %) )
i=1

This L2 norm function has parameters x and y, which are the patch

features in M and the patch features of the test set, respectively, and N
is the length of the feature embedding. Similarly to AnomalyDINO,
the Cosine distance was also used but discarded since it yielded
worse results.

An anomaly heatmap, as shown in Figure 7, is constructed using the
minimum distance at each location, representing the best-case
anomaly score across all training samples. The mask generated
during the pre-processing stage is used to remove regions that were
artificially padded.



Original Image (bad) Raw Anomaly Map

Figure 7: Anomalous evaluation image and corresponding raw
anomaly heatmap

F. Post-Processing

Once the anomaly map is constructed, we can qualitatively identify
anomalous regions through visual inspection. However, the raw
anomaly map contains too much noise and fine detail to reliably
quantitatively classify anomaly presence. To address this, we apply a
post-processing step that reduces noise and highlights meaningful
regions according to predetermined hyperparameters, as seen in
Figure 8. This includes applying a minimum and maximum
threshold, followed by morphological filtering to isolate clusters
above a minimum size and fill small holes. We also experimented
with Gaussian and median filtering, although we found these
approaches degraded performance.

Raw Anomaly Map Post-Processed Anomaly Map

Figure 8: Post-Processed Anomaly Map

G. Scoring & Optimizations

Once we obtain a post-processed anomaly heatmap, we consider
three potential methods for determining an overall anomaly score for
the evaluated image: the maximum value in the heatmap, the mean
value across the heatmap, and the 99th percentile value.

With the anomaly detection pipeline complete, we process all
evaluation images to generate their raw anomaly maps. These maps
are then passed through an optimization loop that randomly generates
post-processing hyperparameters within defined ranges and computes
anomaly scores for each image using all specified scoring methods
(max, mean, and 99th percentile). The loop runs for a fixed duration,
updating the optimal hyperparameter configuration and scoring
method whenever a higher AUROC score is achieved.

IV.RESULTS & EVALUATION
A. Evaluation of the Results

Across multiple runs of the optimizer loop, we consistently see
similar  optimal  hyperparameter  configurations, such as:
{'min_threshold': 39.386, 'max_threshold': 41.942, 'min_object': 2,
'min_hole': 15, ‘method’:  ‘99p’}. After optimizing the
hyperparameters, DinoPatch was able to fully classify between an
anomalous and a nominal image. As can be seen from Table 1. Our
method was able to yield an accuracy, precision, recall, F1 and
AUROC score of 1.00. The histograms seen in Figure 9 show that the
bad and good images are fully separable, with a few samples lying
very close to the threshold.
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Table 1: Quantitative Contribution of each Step

Method Accuracy Precision Recall F1 Score AUROC

No Pre & Post
Processing (49.772 0.839 0.800 1.000 0.889 0.889
Threshold)

No Pre-Processing

(48.144 Threshold) 0.968 0952 1.000 0.976 0973
No Post-Processing

(49.453 Threshold) 0.903 1.000 0.850 0.919 0.895
DinoPatch (49.092 1,000 1000 1000 Loto Lono

Threshold)

It was found that without the preprocessing step, the AUROC score
0f 97.3% was of a result of an anomalous pasta being classified as
nominal and a nominal screw being classified as anomalous, as seen
in Figure 10 below.

s T2
Figure 10: Misclassified Images of Pasta and Screw

Without our preprocessing step, the optimizer loop tends to select
very aggressive thresholding hyperparameters, effectively masking
off the entire string anomaly within the pasta image above since it’s
considered “too anomalous.” The nominal screw being classified as
anomalous, on the other hand, is likely due to the slightly angled
position of the washer, where the top surface of the washer is more
visible compared to the other nominal samples. We have consistently
seen this image flagged across multiple implemented approaches.
DINOV?2 likely sees the top surface of the washer as a noticeably
different texture from the rubberized side edge.



Original Image (good) Raw Anomaly Map

Figure 11: No Preprocessing Anomaly Map of Nominal Image

Furthermore, when the pre-processing step is disabled, a sample raw
anomaly map (as seen in Figure 11) shows highly anomalous regions
despite the input image being nominal. This can be attributed to the
memory bank having no record of screw features at that spatial
location during training. However, despite these anomalous regions,
after applying our post-processing step, this heatmap is classified as
nominal. This indicates that our optimizer is aggressively tuning the
post-processor for optimal evaluation performance. This may suggest
that real-world performance will likely be lower than what was
measured. This disparity could have been captured with a separate
validation and testing set.

Original Image (bad) Raw Anomaly Map
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Figure 12: Heatmaps of Preprocess (top) vs. no preprocessed
(bottom) images

This observation, in combination with the similar AUROC scores
between the “No Post-Processing” and “No Pre or Post-Processing”
trials, somewhat implies that our pre-processing technique has a
relatively insignificant effect; however, visual analysis contradicts
this. When utilizing our pre-processor, visual inspection of a nominal
and anomalous image shown in Figure 12 demonstrates that our has
an impressive capability to localize anomalistic regions, however,
noise imparted by the variance within the background necessitates a
post-processing step. The success of our “No Pre-Processing” runs
can be attributed to the efficiency of the post-processor optimizer
alone.

B. DinoPatch vs Existing Methods Summary

Our approach leverages PCA-informed pre-processing, PatchCore
framework and DINOvV2 feature extraction, effectively handling both
texture-based anomalies (pasta) and shape-based anomalies (screws).
Like AnomalyDINO, our method benefits from DINOv2’s robust
feature embeddings, but unlike their global nearest-neighbor
aggregation, we maintain explicit spatial context, which allows us to
enhance sensitivity to geometric abnormalities. Compared to
Patchcore, which uses CNN-based embeddings with explicit
neighborhood aggregation, our ViT implementation provides a rich
semantic description of the features within each patch. Our technique
integrates strengths from both PatchCore and AnomalyDINO,
optimizing performance across diverse anomalies.

C. Future Considerations

In a future, more refined implementation, the goal would be to
eliminate the need for a post-processing step entirely. Instead, the raw
anomaly map would be of sufficiently high quality and free from
noise, allowing it to be directly used for scoring and classifying an
image as anomalous.

Improvements not implemented that may have significant
performance gains include: Implementing a combined weighted local
and global patch feature distance anomaly scoring method, allowing
for spatially consistent and image-wide patch differences to influence
patch anomaly scores. We could also implement semantic
segmentation to attempt to mask off irrelevant background regions.
Additionally, we could implement the memory bank neighbourhood
analysis employed by Patchcore. Finally, we could train a simple
CNN on each dataset that will predict an Affine transformation
matrix, rather than relying on information extracted by PCA alone.

Each memory bank must be loaded into RAM to perform the nearest
neighbour search required for anomaly map construction. If this
algorithm was employed on larger datasets than the two we were
tasked with, the memory bank quickly becomes cumbersome and
memory intensive as it would use additional memory proportional to
the number of training images. To address this, we could adopt the
N-shot methodology used by AnomalyDINO, where the memory
bank is constructed from N sample images rather than the full dataset.
Alternatively, we could build the memory bank from the full training
set and perform a distillation step using KNN grouping to reduce
redundancy at each patch location. In addition, the dimensionality of
our (1, 768) feature embeddings could be reduced using PCA without
significant loss in specificity.

V. CONCLUSION

In this paper, we presented DinoPatch, an effective anomaly detection
framework combining DINOv2 ViT embeddings with a
PatchCore-inspired memory bank. Our method addressed both
texture (pasta) and shape-based (screws) anomaly detection problems
using PCA-based image alignment and Euclidean nearest-neighbour
distance computations. DinoPatch was used to demonstrate
impressive performance, achieving accuracy, precision, recall,
Fl-score and AUROC scores of 100%. However, we are unsure of
real-world performance without a testing dataset. Our optimizer may
have overfit to the evaluation set to maximize AUROC, and the final
post-processing hyperparameters may generalize poorly.

Qualitative anomaly maps also demonstrated our method’s strong
localization capability. Compared to AnomalyDINO, our method
maintains spatial context, which is crucial for accurately detecting
shape anomalies where AnomalyDINO primarily performs global
NN textural comparisons. Additionally, unlike PatchCore’s
CNN-based feature extraction, our ViT-drive approach provides
richer information. While DinoPatch demonstrated a bright future,
future work involving larger and more varied datasets and rigorous
validation and testing procedures is essential to better assess
generalization and practical implementation.
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